Frattini Theory for Classes of Finite Universal Algebras of Malcev Varieties

被引:0
|
作者
Guo Wenbin
K. P. Shum
机构
[1] Xuzhou Normal University,
[2] Chinese University of Hong Kong,undefined
来源
关键词
universal algebra; formation; Schunck class; Frattini theory;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the Frattini theory of formations and Schunck classes of finite groups to some Frattini theory of formations and Schunck classes of finite universal algebras of Malcev varieties. We prove that if F≠(1) is a nonempty formation (Schunck class) of algebras of a Malcev variety, then its Frattini subformation (Frattini Schunck subclass) Φ(F) consists of all nongenerators of F; moreover, if M is a formation (Schunck class) in F; then Φ(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \subseteq$$ \end{document}Φ(F).
引用
收藏
页码:1039 / 1046
页数:7
相关论文
共 50 条
  • [1] Frattini theory for classes of finite universal algebras of Mal'cev varieties
    Wenbin, G
    Shum, KP
    SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (06) : 1039 - 1046
  • [2] FRATTINI THEORY FOR ALGEBRAS
    TOWERS, DA
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1973, 27 (OCT) : 440 - 462
  • [3] Positive universal classes in locally finite varieties
    Graetzer, G.
    Quackenbush, R. W.
    ALGEBRA UNIVERSALIS, 2010, 64 (1-2) : 1 - 13
  • [4] Positive universal classes in locally finite varieties
    G. Grätzer
    R. W. Quackenbush
    Algebra universalis, 2010, 64 : 1 - 13
  • [5] Lattices of Schunck classes of finite universal algebras
    Guo, WB
    Shum, KP
    ALGEBRA COLLOQUIUM, 2003, 10 (02) : 219 - 228
  • [6] A FRATTINI THEORY FOR LEIBNIZ ALGEBRAS
    Batten, Chelsie
    Bosko-Dunbar, Lindsey
    Hedges, Allison
    Hird, J. T.
    Stagg, Kristen
    Stitzinger, Ernest
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (04) : 1547 - 1557
  • [7] Varieties of universal algebras generated by finite algebras associated with cycle systems
    Zahrai, S
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) : 341 - 342
  • [8] Universal Karoubi characteristic classes of approximately finite algebras
    Nikonov, IM
    SBORNIK MATHEMATICS, 2005, 196 (1-2) : 231 - 242
  • [9] Nonassociativity, Malcev algebras and string theory
    Guenaydin, M.
    Minic, D.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (10): : 873 - 892
  • [10] Universal envelopes of Malcev Algebras: Pointed Moufang bialgebras
    V. N. Zhelyabin
    Siberian Mathematical Journal, 2009, 50 : 1011 - 1026