Topological Ergodicity of Real Cocycles over Minimal Rotations

被引:0
|
作者
Mariusz Lemańczyk
Mieczysław K. Mentzen
机构
[1] Nicholas Copernicus University,
[2] Toruń,undefined
[3] Poland,undefined
来源
关键词
2000 Mathematics Subject Classification: 54H20; Key words: Topological dynamics; topological ergodicity; minimality; cocycle;
D O I
暂无
中图分类号
学科分类号
摘要
 We prove that for each minimal rotation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} on a compact metric group and each topological cocycle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, either φ is a topological coboundary, or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is topologically ergodic, or the partition into orbits is the decomposition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} into minimal components. As an application, we generalize a result by Glasner and show that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a minimal topologically weakly mixing flow, then whenever φ is universally ergodic the minimal map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}
引用
收藏
页码:227 / 246
页数:19
相关论文
共 50 条
  • [1] Topological ergodicity of real cocycles over minimal rotations
    Lemanczyk, M
    Mentzen, MK
    MONATSHEFTE FUR MATHEMATIK, 2002, 134 (03): : 227 - 246
  • [2] ERGODICITY OF A CLASS OF COCYCLES OVER IRRATIONAL ROTATIONS
    LEMANCZYK, M
    MAUDUIT, C
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 124 - 132
  • [3] On multiple ergodicity of affine cocycles over irrational rotations
    Jean-Pierre Conze
    Agata Piękniewska
    Israel Journal of Mathematics, 2014, 201 : 543 - 584
  • [4] ON MULTIPLE ERGODICITY OF AFFINE COCYCLES OVER IRRATIONAL ROTATIONS
    Conze, Jean-Pierre
    Piekniewska, Agata
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (02) : 543 - 584
  • [5] Ergodicity for piecewise smooth cocycles over toral rotations
    Iwanik, A
    FUNDAMENTA MATHEMATICAE, 1998, 157 (2-3) : 235 - 244
  • [6] Constructions of cocycles over irrational rotations
    Bulatek, W
    Lemanczyk, M
    Rudolph, D
    STUDIA MATHEMATICA, 1997, 125 (01) : 1 - 11
  • [7] A temporal central limit theorem for real-valued cocycles over rotations
    Bromberg, Michael
    Ulcigrai, Corinna
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (04): : 2304 - 2334
  • [8] ABSOLUTELY CONTINUOUS COCYCLES OVER IRRATIONAL ROTATIONS
    IWANIK, A
    LEMANCZYK, M
    RUDOLPH, D
    ISRAEL JOURNAL OF MATHEMATICS, 1993, 83 (1-2) : 73 - 95
  • [9] ERGODICITY OF CERTAIN COCYCLES OVER CERTAIN INTERVAL EXCHANGES
    Ralston, David
    Troubetzkoy, Serge
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2523 - 2529
  • [10] Ergodicity of Rokhlin cocycles
    Lemanczyk, M
    Lesigne, E
    JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1): : 43 - 86