Local equivalence of quantum orthogonal arrays and orthogonal arrays

被引:0
|
作者
Jiao Du
Cuijiao Yin
Shanqi Pang
Tianyin Wang
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Henan Normal University,Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control
[3] Luoyang Normal University,School of Mathematical Science
来源
关键词
Local equivalence; Improved quantum orthogonal array; Quantum state; Unitary matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Two orthogonal arrays (OAs) are locally equivalent if they lead to locally equivalent quantum states. By studying permutations of the rows or levels of each factor, we present the local equivalence between two OAs. Using the tensor products of unitary matrices, we find that two infinite classes of OAs, OA(dn,n+1,d,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d^n,n+1,d,n)$$\end{document} and OA(d,n+1,d,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d,n+1,d,1)$$\end{document}, are locally equivalent. Therefore, we provide a positive answer to the open problem of which OAs are locally equivalent, i.e., OA(r,N,d,k)∼locOA(r′,N,d,k′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{OA}(r,N,d,k)\sim _{loc}\mathrm{OA}(r',N,d,k')$$\end{document}, in a sense that they lead to locally equivalent quantum states. In addition, an improved quantum orthogonal array (IQOA) is defined. The equivalence and local equivalence of IQOAs are investigated.
引用
收藏
相关论文
共 50 条
  • [1] Local equivalence of quantum orthogonal arrays and orthogonal arrays
    Du, Jiao
    Yin, Cuijiao
    Pang, Shanqi
    Wang, Tianyin
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [2] Equivalence of decoupling schemes and orthogonal arrays
    Rotteler, Martin
    Wocjan, Pawel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4171 - 4181
  • [3] Incomplete orthogonal arrays and idempotent orthogonal arrays
    Maurin, F
    GRAPHS AND COMBINATORICS, 1996, 12 (03) : 253 - 266
  • [4] COLUMN-ORTHOGONAL STRONG ORTHOGONAL ARRAYS AND SLICED STRONG ORTHOGONAL ARRAYS
    Liu, Haiyan
    Liu, Min-Qian
    STATISTICA SINICA, 2015, 25 (04) : 1713 - 1734
  • [5] ON ORTHOGONAL ARRAYS
    SEIDEN, E
    ZEMACH, R
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (05): : 1355 - +
  • [6] Miscellanea Nearly orthogonal arrays mappable into fully orthogonal arrays
    Mukerjee, Rahul
    Sun, Fasheng
    Tang, Boxin
    BIOMETRIKA, 2014, 101 (04) : 957 - 963
  • [7] New results on large sets of orthogonal arrays and orthogonal arrays
    Chen, Guangzhou
    Niu, Xiaodong
    Shi, Jiufeng
    JOURNAL OF COMBINATORIAL DESIGNS, 2024, 32 (08) : 488 - 515
  • [8] Local unitary equivalence of absolutely maximally entangled states constructed from orthogonal arrays
    Ramadas, N.
    Lakshminarayan, Arul
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (12)
  • [9] Constructions for new orthogonal arrays based on large sets of orthogonal arrays
    Guangzhou Chen
    Xiaodong Niu
    Designs, Codes and Cryptography, 2023, 91 : 2605 - 2625
  • [10] Constructions for new orthogonal arrays based on large sets of orthogonal arrays
    Chen, Guangzhou
    Niu, Xiaodong
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (07) : 2605 - 2625