Global existence and decay for a chemotaxis-growth system with generalized volume-filling effect and sublinear secretion

被引:0
|
作者
Pan Zheng
Chunlai Mu
Yongsheng Mi
机构
[1] Chongqing University of Posts and Telecommunications,Department of Applied Mathematics
[2] Chongqing University,College of Mathematics and Statistics
[3] Yangtze Normal University,College of Mathematics and Computer Sciences
关键词
Boundedness; Decay; Chemotaxis; Volume-filling effect; Logistic source; 35K55; 35B35; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a fully parabolic chemotaxis-growth system with generalized volume-filling effect and sublinear secretion ut=∇·(φ(u)∇u)-∇·(ψ(u)∇v)+ru-μu2,(x,t)∈Ω×(0,∞),vt=Δv-v+g(u),(x,t)∈Ω×(0,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} u_t=\nabla \cdot (\varphi (u)\nabla u)-\nabla \cdot (\psi (u)\nabla v)+ru-\mu u^{2}, &{}\quad (x,t)\in \Omega \times (0,\infty ), \\ v_{t}=\Delta v-v+g(u), &{}\quad (x,t)\in \Omega \times (0,\infty ), \end{array} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^{2}$$\end{document}, where φ(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (u)$$\end{document} is a nonlinear diffusion function, ψ(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (u)$$\end{document} is a chemotactic sensitivity and g(u) is a production rate of the chemoattractant. Under some suitable assumptions on the nonlinearities φ(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (u)$$\end{document}, ψ(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (u)$$\end{document} and g(u), we study the global boundedness and decay of solutions for the system.
引用
收藏
相关论文
共 50 条
  • [1] Global existence and decay for a chemotaxis-growth system with generalized volume-filling effect and sublinear secretion
    Zheng, Pan
    Mu, Chunlai
    Mi, Yongsheng
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (02):
  • [2] On a generalized volume-filling chemotaxis system with nonlinear signal production
    Zheng, Pan
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 211 - 231
  • [3] On a generalized volume-filling chemotaxis system with nonlinear signal production
    Pan Zheng
    Monatshefte für Mathematik, 2022, 198 : 211 - 231
  • [4] On the attraction-repulsion chemotaxis system with volume-filling effect
    Peng, Hongyun
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (11)
  • [5] BOUNDEDNESS AND BLOW-UP FOR A CHEMOTAXIS SYSTEM WITH GENERALIZED VOLUME-FILLING EFFECT AND LOGISTIC SOURCE
    Zheng, Pan
    Mu, Chunlai
    Hu, Xuegang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) : 2299 - 2323
  • [6] Global Bifurcation of Stationary Solutions for a Volume-Filling Chemotaxis Model with Logistic Growth
    Dong, Yaying
    Li, Shanbing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (13):
  • [7] Patterns in a generalized volume-filling chemotaxis model with cell proliferation
    Ma, Manjun
    Wang, Zhian
    ANALYSIS AND APPLICATIONS, 2017, 15 (01) : 83 - 106
  • [8] On convergence to equilibria for a chemotaxis model with volume-filling effect
    Jiang, Jie
    Zhang, Yanyan
    ASYMPTOTIC ANALYSIS, 2009, 65 (1-2) : 79 - 102
  • [9] Singularity formation in chemotaxis systems with volume-filling effect
    Wang, Zhi-An
    Winkler, Michael
    Wrzosek, Dariusz
    NONLINEARITY, 2011, 24 (12) : 3279 - 3297
  • [10] Wavefront invasion for a volume-filling chemotaxis model with logistic growth
    Han, Yazhou
    Li, Zhongfang
    Zhang, Shutao
    Ma, Manjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (02) : 471 - 478