Unitary Representations of Uq(??}(2,ℝ)),¶the Modular Double and the Multiparticle q-Deformed¶Toda Chain

被引:0
|
作者
S. Kharchev
D. Lebedev
M. Semenov-Tian-Shansky
机构
[1] Institute of Theoretical and Experimental Physics,
[2] Moscow 117259,undefined
[3] Russia,undefined
[4] Université de Bourgogne,undefined
[5] 21078 Dijon,undefined
[6] France,undefined
[7] Steklov Math. Institute,undefined
[8] St. Petersburg 191011,undefined
[9] Russia,undefined
来源
关键词
Sine; Explicit Formula; Representation Theory; Quantum Group; Unitary Representation;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the analytic theory of the quantum q-deformed Toda chains; the technique used combines the methods of representation theory and the Quantum Inverse Scattering Method. The key phenomenon which is under scrutiny is the role of the modular duality concept (first discovered by L. Faddeev) in the representation theory of noncompact semisimple quantum groups. Explicit formulae for the Whittaker vectors are presented in terms of the double sine functions and the wave functions of the N-particle q-deformed open Toda chain are given as a multiple integral of the Mellin–Barnes type. For the periodic chain the two dual Baxter equations are derived.
引用
收藏
页码:573 / 609
页数:36
相关论文
共 50 条
  • [1] Unitary representations of Uq (sl(2,R)), the modular double and the multiparticle q-deformed toda chains
    Kharchev, S
    Lebedev, D
    Semenov-Tian-Shansky, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (03) : 573 - 609
  • [2] Unitary representations of the modular and two-particle Q-deformed Toda chains
    Kharchev, S
    Lebedev, D
    Semenov-Tian-Shansky, M
    INTEGRABLE STRUCTURES OF EXACTLY SOLVABLE TWO-DIMENSIONAL MODELS OF QUANTUM FIELD THEORY, 2001, 35 : 223 - 242
  • [3] Representations of the q-deformed algebra Uq(iso2)
    Havlícek, M
    Klimyk, A
    Posta, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (25): : 4681 - 4690
  • [4] Representations of the q-deformed algebra Uq′(SO4)
    Havlícek, M
    Klimyk, AU
    Posta, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (11) : 5389 - 5416
  • [5] REPRESENTATIONS OF THE Q-DEFORMED ALGEBRA UQ'(SO4)
    KACHURIK, II
    KLIMYK, AU
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21): : 7087 - 7097
  • [6] Representations of the cyclically symmetric q-deformed algebra Uq(so3)
    Havlícek, M
    Posta, S
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (11) : 1347 - 1353
  • [7] Representations of the Q-deformed Euclidean Algebra Uq(iso3) and Spectra of their Operators
    Kachurik I.I.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 516 - 524
  • [8] On tensor products of representations of the non-standard q-deformed algebra Uq′(son)
    Iorgov, NZ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (14): : 3095 - 3108
  • [9] q-Deformed Fock spaces and modular representations of spin symmetric groups
    Leclerc, B.
    Thibon, J.-Y.
    Journal of Physics A: Mathematical and General, 30 (17):
  • [10] q-Deformed Fock spaces and modular representations of spin symmetric groups
    Leclerc, B
    Thibon, JY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (17): : 6163 - 6176