Gradient formula for transition semigroup corresponding to stochastic equation driven by a system of independent Lévy processes

被引:0
|
作者
Alexei M. Kulik
Szymon Peszat
Enrico Priola
机构
[1] Wroclaw University of Science and Technology,Faculty of Pure and Applied Mathematics
[2] Institute of Mathematics,undefined
[3] Jagiellonian University,undefined
[4] Dipartimento di Matematica “F. Casorati”,undefined
[5] University of Pavia,undefined
关键词
Bismut–Elworthy–Li formula; Lévy processes; Malliavin calculus; 60H10; 60H07; 60G51; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Pt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_t)$$\end{document} be the transition semigroup of the Markov family (Xx(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^x(t))$$\end{document} defined by SDE dX=b(X)dt+dZ,X(0)=x,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathrm{d}X= b(X)\mathrm{d}t + \mathrm{d}Z, \qquad X(0)=x, \end{aligned}$$\end{document}where Z=Z1,…,Zd∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z=\left( Z_1, \ldots , Z_d\right) ^*$$\end{document} is a system of independent real-valued Lévy processes. Using the Malliavin calculus we establish the following gradient formula ∇Ptf(x)=EfXx(t)Y(t,x),f∈Bb(Rd),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \nabla P_tf(x)= {\mathbb {E}}\, f\left( X^x(t)\right) Y(t,x), \qquad f\in B_b({\mathbb {R}}^d), \end{aligned}$$\end{document}where the random field Y does not depend on f. Moreover, in the important cylindrical α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable case α∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,2)$$\end{document}, where Z1,…,Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_1, \ldots , Z_d$$\end{document} are α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable processes, we are able to prove sharp L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-estimates for Y(t, x). Uniform estimates on ∇Ptf(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla P_tf(x)$$\end{document} are also given.
引用
收藏
相关论文
共 50 条
  • [1] Gradient formula for transition semigroup corresponding to stochastic equation driven by a system of independent Levy processes
    Kulik, Alexei M.
    Peszat, Szymon
    Priola, Enrico
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (01):
  • [2] Averaging principle of stochastic Burgers equation driven by Lévy processes
    Yue, Hongge
    Xu, Yong
    Wang, Ruifang
    Jiao, Zhe
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (10)
  • [3] Analytic Properties of Markov Semigroup Generated by Stochastic Differential Equations Driven by Lévy Processes
    Pani W. Fernando
    Erika Hausenblas
    Paul Razafimandimby
    Potential Analysis, 2017, 46 : 1 - 21
  • [4] Analytic Properties of Markov Semigroup Generated by Stochastic Differential Equations Driven by L,vy Processes
    Fernando, Pani W.
    Hausenblas, Erika
    Razafimandimby, Paul
    POTENTIAL ANALYSIS, 2017, 46 (01) : 1 - 21
  • [5] Lévy processes driven by stochastic volatility
    Chourdakis K.
    Asia-Pacific Financial Markets, 2005, 12 (4) : 333 - 352
  • [6] Maximal regularity for stochastic convolutions driven by Lévy processes
    Zdzisław Brzeźniak
    Erika Hausenblas
    Probability Theory and Related Fields, 2009, 145 : 615 - 637
  • [7] Maximal regularity for stochastic convolutions driven by L,vy processes
    Brzezniak, Zdzislaw
    Hausenblas, Erika
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (3-4) : 615 - 637
  • [8] Ergodicity of stochastic Boussinesq equations driven by Lvy processes
    ZHENG Yan
    HUANG JianHua
    Science China(Mathematics), 2013, 56 (06) : 1193 - 1210
  • [9] Ergodicity of stochastic Boussinesq equations driven by Lévy processes
    Yan Zheng
    JianHua Huang
    Science China Mathematics, 2013, 56 : 1195 - 1212
  • [10] Dynamic Programming of the Stochastic Burgers Equation Driven by Lévy Noise
    Manil T. Mohan
    Kumarasamy Sakthivel
    Sivaguru S. Sritharan
    Journal of Optimization Theory and Applications, 2024, 201 : 490 - 538