Symmetric factorizations of the complete uniform hypergraph

被引:0
|
作者
Hu Ye Chen
Zai Ping Lu
机构
[1] Nankai University,Center for Combinatorics, LPMC
来源
关键词
Uniform hypergraph; 1-Factorization; Symmetric factorization; -Homogeneous permutation group; Fractional linear mapping; Mathieu group; Steiner system; 05C65; 05C70; 05E18; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
A factorization of the complete k-hypergraph (V,V{k})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V,V^{\{k\}})$$\end{document} of index s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document}, simply a (k, s) factorization on V, is a partition {F1,F2,…,Fs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{F_1,F_2,\ldots , F_s\}$$\end{document} of the edge set V{k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V^{\{k\}}$$\end{document} into s disjoint subsets such that each k-hypergraph (V,Fi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V,F_i)$$\end{document}, called a factor, is a spanning subhypergraph of (V,V{k})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V,V^{\{k\}})$$\end{document}. A (k, s) factorization {F1,F2,…,Fs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{F_1,F_2,\ldots , F_s\}$$\end{document} on V is symmetric if there is a subgroup G of the symmetric group Sym(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Sym}(V)$$\end{document} such that G induces a transitive action on {F1,F2,…,Fs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{F_1,F_2,\ldots , F_s\}$$\end{document} and for each i, the stabilizer GFi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{F_i}$$\end{document} is transitive on both V and Fi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_i$$\end{document}. A symmetric factorization on V is homogeneous if all its factors admit a common transitive subgroup of Sym(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Sym}(V)$$\end{document}. In this paper, we give a complete classification of symmetric (k, s) factorizations on a set of size n under the assumption that s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document} and 6≤2k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6\le 2k\le n$$\end{document}. It is proved that, up to isomorphism, there are two infinite families and 29 sporadic examples of symmetric factorizations which are not homogeneous. Among these symmetric factorizations, only eight of them are not 1-factorizations.
引用
收藏
页码:475 / 497
页数:22
相关论文
共 50 条
  • [1] Symmetric factorizations of the complete uniform hypergraph
    Chen, Hu Ye
    Lu, Zai Ping
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (02) : 475 - 497
  • [2] A census of one-factorizations of the complete 3-uniform hypergraph of order 9
    Khatirinejad, Mahdad
    Ostergard, Patric R. J.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 47 : 239 - 245
  • [3] Extending Factorizations of Complete Uniform Hypergraphs
    Bahmanian, M. Amin
    Newman, Mike
    COMBINATORICA, 2018, 38 (06) : 1309 - 1335
  • [4] Extending Factorizations of Complete Uniform Hypergraphs
    M. Amin Bahmanian
    Mike Newman
    Combinatorica, 2018, 38 : 1309 - 1335
  • [5] On 2-Factorizations of the Complete 3-Uniform Hypergraph of Order 12 Minus a 1-Factor
    Adams, Peter
    El-Zanati, Saad, I
    Florido, Peter
    Turner, William
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 325 - 331
  • [6] Symmetric 1-factorizations of the complete graph
    Pasotti, Anita
    Pellegrini, Marco Antonio
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (05) : 1410 - 1418
  • [7] The characteristic polynomial of the complete 3-uniform hypergraph
    Zheng, Ya-Nan
    Linear Algebra and Its Applications, 2021, 627 : 275 - 286
  • [8] The characteristic polynomial of the complete 3-uniform hypergraph
    Zheng, Ya-Nan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 627 : 275 - 286
  • [9] Edge-transitive homogeneous factorizations of complete uniform hypergraphs
    Chen, Hu Ye
    Lu, Zai Ping
    JOURNAL OF GRAPH THEORY, 2018, 87 (03) : 305 - 316
  • [10] Cyclic Uniform 2-Factorizations of the Complete Multipartite Graph
    Pasotti, Anita
    Pellegrini, Marco Antonio
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 901 - 930