On the performance of the algebraic optimized Schwarz methods with applications

被引:0
|
作者
Lahcen Laayouni
Daniel B. Szyld
机构
[1] Al Akhawayn University,School of Science and Engineering
[2] Temple University,Department of Mathematics (038
来源
Numerical Algorithms | 2014年 / 67卷
关键词
Linear systems; Banded matrices; Block matrices; Schwarz methods; Optimized Schwarz methods; Iterative methods; Preconditioners; 65F08; 65F10; 65N22; 65N55;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the performance of algebraic optimized Schwarz methods used as preconditioners for the solution of discretized differential equations. These methods consist on modifying the so-called transmission blocks. The transmission blocks are replaced by new blocks in order to improve the convergence of the corresponding iterative algorithms. In the optimal case, convergence in two iterations can be achieved. We are also interested in the behavior of the algebraic optimized Schwarz methods with respect to changes in the problems parameters. We focus on constructing preconditioners for different numerically challenging differential problems such as: Periodic and Torus problems; Meshfree problems; Three-dimensional problems. We present different numerical simulations corresponding to different type of problems in two- and three-dimensions.
引用
收藏
页码:889 / 916
页数:27
相关论文
共 50 条
  • [1] On the performance of the algebraic optimized Schwarz methods with applications
    Laayouni, Lahcen
    Szyld, Daniel B.
    NUMERICAL ALGORITHMS, 2014, 67 (04) : 889 - 916
  • [2] Optimized Schwarz Methods
    Nataf, F.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 233 - 240
  • [3] THE INFLUENCE OF DOMAIN TRUNCATION ON THE PERFORMANCE OF OPTIMIZED SCHWARZ METHODS
    Xu, Yingxiang
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2018, 49 : 182 - 209
  • [4] On the geometric convergence of optimized Schwarz methods with applications to elliptic problems
    Loisel, Sebastien
    Szyld, Daniel B.
    NUMERISCHE MATHEMATIK, 2010, 114 (04) : 697 - 728
  • [5] On the geometric convergence of optimized Schwarz methods with applications to elliptic problems
    Sébastien Loisel
    Daniel B. Szyld
    Numerische Mathematik, 2010, 114 : 697 - 728
  • [6] MULTILEVEL OPTIMIZED SCHWARZ METHODS
    Gander, Martin J.
    Vanzan, Tommaso
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05): : A3180 - A3209
  • [7] Algebraic theory of multiplicative Schwarz methods
    Michele Benzi
    Andreas Frommer
    Reinhard Nabben
    Daniel B. Szyld
    Numerische Mathematik, 2001, 89 : 605 - 639
  • [8] Algebraic theory of multiplicative Schwarz methods
    Benzi, M
    Frommer, A
    Nabben, R
    Szyld, DB
    NUMERISCHE MATHEMATIK, 2001, 89 (04) : 605 - 639
  • [9] A Discovery Algorithm for the Algebraic Construction of Optimized Schwarz Preconditioners
    St-Cyr, Amik
    Gander, Martin J.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 355 - 362
  • [10] On the influence of geometry on optimized Schwarz methods
    Gander M.J.
    SeMA Journal, 2011, 53 (1): : 71 - 78