Topological Modular Forms and the Absence of All Heterotic Global Anomalies

被引:0
|
作者
Yuji Tachikawa
Mayuko Yamashita
机构
[1] The University of Tokyo,Kavli Institute for the Physics and Mathematics of the Universe (WPI)
[2] Kyoto University,Research Institute for Mathematical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We reformulate the question of the absence of global anomalies of heterotic string theory mathematically in terms of a certain natural transformation TMF∙→(IZΩstring)∙-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {TMF} ^\bullet \rightarrow (I_\mathbb {Z}\Omega ^{\text {string} })^{\bullet -20}$$\end{document}, from topological modular forms to the Anderson dual of string bordism groups, using the Segal–Stolz–Teichner conjecture. We will show that this natural transformation vanishes, implying that heterotic global anomalies are always absent. The fact that TMF21(pt)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {TMF} ^{21}(\text {pt} )=0$$\end{document} plays an important role in the process. Along the way, we also discuss how the twists of TMF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {TMF} $$\end{document} can be described under the Segal–Stolz–Teichner conjecture, by using the result of Freed and Hopkins concerning anomalies of quantum field theories. The paper contains separate introductions for mathematicians and for string theorists, in the hope of making the content more accessible to a larger audience. The sections are also demarcated cleanly into mathematically rigorous parts and those which are not.
引用
收藏
页码:1585 / 1620
页数:35
相关论文
共 50 条