Tropical Hodge numbers of non-archimedean curves

被引:0
|
作者
Philipp Jell
机构
[1] Georgia Institute of Technology,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the tropical Dolbeault cohomology of non-archimedean curves as defined by Chambert-Loir and Ducros. We give a precise condition for when this cohomology satisfies Poincaré duality. The condition is always satisfied when the residue field of the non-archimedean base field is the algebraic closure of a finite field. We also show that for curves over fields with residue field ℂ, the tropical (1, 1)-Dolbeault cohomology can be infinite dimensional. Our main new ingredient is an exponential type sequence that relates tropical Dolbeault cohomology to the cohomology of the sheaf of harmonic functions. As an application of our Poincaré duality result, we calculate the dimensions of the tropical Dolbeault cohomology, called tropical Hodge numbers, for (open subsets of) curves.
引用
收藏
页码:287 / 305
页数:18
相关论文
共 50 条
  • [1] Tropical Hodge numbers of non-archimedean curves
    Jell, Philipp
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 229 (01) : 287 - 305
  • [2] A NON-ARCHIMEDEAN ANALOGUE OF THE HODGE-D-CONJECTURE FOR PRODUCTS OF ELLIPTIC CURVES
    Sreekantan, Ramesh
    JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (04) : 781 - 798
  • [3] Poincare duality for the tropical Dolbeault cohomology of non-archimedean Mumford curves
    Jell, Philipp
    Wanner, Veronika
    JOURNAL OF NUMBER THEORY, 2018, 187 : 344 - 371
  • [4] Liouville numbers in the non-archimedean case
    Chaichana, Tuangrat
    Komatsu, Takao
    Laohakosol, Vichian
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (1-2): : 39 - 63
  • [5] On the structure of non-archimedean analytic curves
    Baker, Matthew
    Payne, Sam
    Rabinoff, Joseph
    TROPICAL AND NON-ARCHIMEDEAN GEOMETRY, 2013, 605 : 93 - +
  • [6] Non-Archimedean and tropical theta functions
    Foster, Tyler
    Rabinoff, Joseph
    Shokrieh, Farbod
    Soto, Alejandro
    MATHEMATISCHE ANNALEN, 2018, 372 (3-4) : 891 - 914
  • [7] Non-Archimedean and tropical theta functions
    Tyler Foster
    Joseph Rabinoff
    Farbod Shokrieh
    Alejandro Soto
    Mathematische Annalen, 2018, 372 : 891 - 914
  • [8] Non-archimedean amoebas and tropical varieties
    Einsiedler, Manfred
    Kapranov, Mikhail
    Lind, Douglas
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 601 : 139 - 157
  • [9] Non-Archimedean orbifolds covered by Mumford curves
    Kato, F
    JOURNAL OF ALGEBRAIC GEOMETRY, 2005, 14 (01) : 1 - 34
  • [10] Energy Minimization Principle for non-archimedean curves
    Wanner, Veronika
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (01): : 1 - 39