Minimizers of a Class of Constrained Vectorial Variational Problems: Part I.

被引:0
|
作者
Hichem Hajaiej
Peter A. Markowich
Saber Trabelsi
机构
[1] King Saud University,Department of Mathematics, College of Science
[2] King Abdullah University of Science and Technology,Division of Math & Computer Sc & Eng
来源
关键词
12345; 54321; Vectorial Schrödinger; constrained minimization problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges on the concentration-compactness approach. In the second part, we will treat orthogonal constrained problems for another class of integrands using density matrices method.
引用
收藏
页码:81 / 98
页数:17
相关论文
共 50 条
  • [1] Minimizers of a Class of Constrained Vectorial Variational Problems: Part I.
    Hajaiej, Hichem
    Markowich, Peter A.
    Trabelsi, Saber
    MILAN JOURNAL OF MATHEMATICS, 2014, 82 (01) : 81 - 98
  • [2] On the Uniqueness of Minimizers for a Class of Variational Problems with Polyconvex Integrand
    Awi, Romeo
    Sedjro, Marc
    ACTA APPLICANDAE MATHEMATICAE, 2020, 168 (01) : 137 - 167
  • [3] On the Uniqueness of Minimizers for a Class of Variational Problems with Polyconvex Integrand
    Romeo Awi
    Marc Sedjro
    Acta Applicandae Mathematicae, 2020, 168 : 137 - 167
  • [4] EXISTENCE OF MINIMIZERS OF MULTI-CONSTRAINED VARIATIONAL PROBLEMS FOR PRODUCT FUNCTIONS
    Al Saud, Huda
    Hajaiej, Hichem
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, : 1 - 16
  • [5] HOLDER CONTINUITY FOR VECTORIAL LOCAL MINIMIZERS OF VARIATIONAL INTEGRALS
    Shan, Yanan
    Gao, Hongya
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (01) : 289 - 297
  • [6] Vectorial variational problems in L∞ constrained by the Navier-Stokes equations
    Clark, Ed
    Katzourakis, Nikos
    Muha, Boris
    NONLINEARITY, 2022, 35 (01) : 470 - 491
  • [7] Variational Problems with Lipschitzian Minimizers
    1600, Elsevier Masson s.r.l. (06):
  • [8] Existence of minimizers of free autonomous variational problems via solvability of constrained ones
    Cupini, Giovanni
    Guidorzi, Marcello
    Marcelli, Cristina
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1183 - 1205
  • [9] Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals
    M. Bildhauer
    M. Fuchs
    manuscripta mathematica, 2007, 123 : 269 - 283
  • [10] Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals
    Bildhauer, M.
    Fuchs, M.
    MANUSCRIPTA MATHEMATICA, 2007, 123 (03) : 269 - 283