Asymptotic behavior of positive solutions of a Dirichlet problem involving combined nonlinearities

被引:0
|
作者
Giovanni Anello
机构
[1] University of Messina,Department of Mathematics
来源
关键词
Elliptic boundary value problems; Positive solutions; Variational methods; Asymptotic behavior; Combined nonlinearities; 35J20; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We study the behavior of positive solutions of the following Dirichlet problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left \{ \begin{array}{ll} -\Delta_{p}u=\lambda u^{s-1}+u^{q-1} &\quad {\rm in} \enspace \Omega \\ u_{\mid\partial \Omega}=0 \end{array} \right. $$\end{document}when s → p−. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p >1 , s\,{\in}\,]1,p]}$$\end{document} and q > p with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q\leq\frac{Np}{N-p}}$$\end{document} if N > p.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 50 条