Vorticity;
Stokes Equation;
Lyapunov Exponent;
Stagnation Point;
Linear Instability;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the stability of two-dimensional solutions of the three-dimensional Navier–Stokes equations, in the limit of small viscosity. We are interested in steady flows with locally closed streamlines. We consider the so-called elliptic and centrifugal instabilities, which correspond to the continuous spectrum of the underlying linearized Euler operator. Through the justification of highly oscillating Wentzel–Kramers–Brillouin expansions, we prove the nonlinear instability of such flows. The main difficulty is the control of nonoscillating and nonlocal perturbations issued from quadratic interactions.
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, Brazil
Lopes Filho, Milton C.
Mazzucato, Anna L.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16801 USAUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, Brazil
Mazzucato, Anna L.
Niu, Dongjuan
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, Brazil
Niu, Dongjuan
Nussenzveig Lopes, Helena J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, Brazil
Nussenzveig Lopes, Helena J.
Titi, Edriss S.
论文数: 0引用数: 0
h-index: 0
机构:
Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USAUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, Brazil