A scalable SCENIC workflow for single-cell gene regulatory network analysis

被引:0
|
作者
Bram Van de Sande
Christopher Flerin
Kristofer Davie
Maxime De Waegeneer
Gert Hulselmans
Sara Aibar
Ruth Seurinck
Wouter Saelens
Robrecht Cannoodt
Quentin Rouchon
Toni Verbeiren
Dries De Maeyer
Joke Reumers
Yvan Saeys
Stein Aerts
机构
[1] KU Leuven,VIB Center for Brain & Disease Research
[2] KU Leuven,Department of Human Genetics
[3] VIB Center for Inflammation Research,Data Mining and Modelling for Biomedicine
[4] Ghent University,Department of Applied Mathematics, Computer Science and Statistics
[5] Ghent University Hospital,Center for Medical Genetics
[6] Janssen Pharmaceutica,undefined
[7] Data Intuitive,undefined
来源
Nature Protocols | 2020年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon’s target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h.
引用
收藏
页码:2247 / 2276
页数:29
相关论文
共 50 条
  • [1] A scalable SCENIC workflow for single-cell gene regulatory network analysis
    van de Sande, Bram
    Flerin, Christopher
    Davie, Kristofer
    De Waegeneer, Maxime
    Hulselmans, Gert
    Aibar, Sara
    Seurinck, Ruth
    Saelens, Wouter
    Cannoodt, Robrecht
    Rouchon, Quentin
    Verbeiren, Toni
    De Maeyer, Dries
    Reumers, Joke
    Saeys, Yvan
    Aerts, Stein
    NATURE PROTOCOLS, 2020, 15 (07) : 2247 - 2276
  • [2] SCENIC: single-cell regulatory network inference and clustering
    Sara Aibar
    Carmen Bravo González-Blas
    Thomas Moerman
    Vân Anh Huynh-Thu
    Hana Imrichova
    Gert Hulselmans
    Florian Rambow
    Jean-Christophe Marine
    Pierre Geurts
    Jan Aerts
    Joost van den Oord
    Zeynep Kalender Atak
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2017, 14 : 1083 - 1086
  • [3] SCENIC: single-cell regulatory network inference and clustering
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Moerman, Thomas
    Van Anh Huynh-Thu
    Imrichova, Hana
    Hulselmans, Gert
    Rambow, Florian
    Marine, Jean-Christophe
    Geurts, Pierre
    Aerts, Jan
    van den Oord, Joost
    Atak, Zeynep Kalender
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2017, 14 (11) : 1083 - +
  • [4] Single-cell gene regulatory network analysis for mixed cell populations
    Junjie Tang
    Changhu Wang
    Feiyi Xiao
    Ruibin Xi
    Quantitative Biology, 2024, 12 (04) : 375 - 388
  • [5] Single-cell gene regulatory network analysis for mixed cell populations
    Tang, Junjie
    Wang, Changhu
    Xiao, Feiyi
    Xi, Ruibin
    QUANTITATIVE BIOLOGY, 2024, 12 (04) : 375 - 388
  • [6] SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks
    Carmen Bravo González-Blas
    Seppe De Winter
    Gert Hulselmans
    Nikolai Hecker
    Irina Matetovici
    Valerie Christiaens
    Suresh Poovathingal
    Jasper Wouters
    Sara Aibar
    Stein Aerts
    Nature Methods, 2023, 20 : 1355 - 1367
  • [7] SCENIC plus : single-cell multiomic inference of enhancers and gene regulatory networks
    Gonzalez-Blas, Carmen Bravo
    De Winter, Seppe
    Hulselmans, Gert
    Hecker, Nikolai
    Matetovici, Irina
    Christiaens, Valerie
    Poovathingal, Suresh
    Wouters, Jasper
    Aibar, Sara
    Aerts, Stein
    NATURE METHODS, 2023, 20 (09) : 1355 - +
  • [8] Gene regulatory network inference in single-cell biology
    Akers, Kyle
    Murali, T. M.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 87 - 97
  • [9] Enabling comparative gene regulatory network analysis on single-cell data with SCORPION
    Osorio, Daniel
    Kuijjer, Marieke L.
    NATURE COMPUTATIONAL SCIENCE, 2024, 4 (03): : 167 - 168