Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. I. General Theory and Square-Lattice Chromatic Polynomial

被引:0
|
作者
Jesús Salas
Alan D. Sokal
机构
[1] Universidad de Zaragoza,Departamento de Física Teórica, Facultad de Ciencias
[2] New York University,Department of Physics
来源
关键词
chromatic polynomial; chromatic root; antiferromagnetic Potts model; square lattice; transfer matrix; Fortuin–Kasteleyn representation; Temperley–Lieb algebra; Beraha–Kahane–Weiss theorem; Beraha numbers;
D O I
暂无
中图分类号
学科分类号
摘要
We study the chromatic polynomials (= zero-temperature antiferromagnetic Potts-model partition functions) PG(q) for m×n rectangular subsets of the square lattice, with m≤8 (free or periodic transverse boundary conditions) and n arbitrary (free longitudinal boundary conditions), using a transfer matrix in the Fortuin–Kasteleyn representation. In particular, we extract the limiting curves of partition-function zeros when n→∞, which arise from the crossing in modulus of dominant eigenvalues (Beraha–Kahane–Weiss theorem). We also provide evidence that the Beraha numbers B2,B3,B4,B5 are limiting points of partition-function zeros as n→∞ whenever the strip width m is ≥7 (periodic transverse b.c.) or ≥8 (free transverse b.c.). Along the way, we prove that a noninteger Beraha number (except perhaps B10) cannot be a chromatic root of any graph.
引用
收藏
页码:609 / 699
页数:90
相关论文
共 11 条