Image forgery detection: a survey of recent deep-learning approaches

被引:0
|
作者
Marcello Zanardelli
Fabrizio Guerrini
Riccardo Leonardi
Nicola Adami
机构
[1] CNIT – University of Brescia,Department of Information Engineering
来源
关键词
Image forgery detection; Image forensics; Deep learning; Copy-move; Splicing; DeepFake; Survey;
D O I
暂无
中图分类号
学科分类号
摘要
In the last years, due to the availability and easy of use of image editing tools, a large amount of fake and altered images have been produced and spread through the media and the Web. A lot of different approaches have been proposed in order to assess the authenticity of an image and in some cases to localize the altered (forged) areas. In this paper, we conduct a survey of some of the most recent image forgery detection methods that are specifically designed upon Deep Learning (DL) techniques, focusing on commonly found copy-move and splicing attacks. DeepFake generated content is also addressed insofar as its application is aimed at images, achieving the same effect as splicing. This survey is especially timely because deep learning powered techniques appear to be the most relevant right now, since they give the best overall performances on the available benchmark datasets. We discuss the key-aspects of these methods, while also describing the datasets on which they are trained and validated. We also discuss and compare (where possible) their performance. Building upon this analysis, we conclude by addressing possible future research trends and directions, in both deep learning architectural and evaluation approaches, and dataset building for easy methods comparison.
引用
收藏
页码:17521 / 17566
页数:45
相关论文
共 50 条
  • [1] Image forgery detection: a survey of recent deep-learning approaches
    Zanardelli, Marcello
    Guerrini, Fabrizio
    Leonardi, Riccardo
    Adami, Nicola
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 17521 - 17566
  • [2] Image Forgery Detection using Deep Learning: A Survey
    Barad, Zankhana J.
    Goswami, Mukesh M.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 571 - 576
  • [3] A survey on deep learning-based image forgery detection
    Mehrjardi, Fatemeh Zare
    Latif, Ali Mohammad
    Zarchi, Mohsen Sardari
    Sheikhpour, Razieh
    PATTERN RECOGNITION, 2023, 144
  • [4] Convnext-Upernet Based Deep-Learning Model for Image Forgery Detection and Localization
    Hu L.-H.
    Chen B.-Y.
    Tan S.-Q.
    Li B.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (10): : 2225 - 2239
  • [5] Toward Deep-Learning-Based Methods in Image Forgery Detection: A Survey
    Pham, Nam Thanh
    Park, Chun-Su
    IEEE ACCESS, 2023, 11 : 11224 - 11237
  • [6] Deep learning technology for face forgery detection: A survey
    Ma, Lixia
    Yang, Puning
    Xu, Yuting
    Yang, Ziming
    Li, Peipei
    Huang, Huaibo
    NEUROCOMPUTING, 2025, 618
  • [7] Image Forgery Detection and Deep Learning Techniques: A Review
    Agarwal, Ritu
    Khudaniya, Deepak
    Gupta, Abhinav
    Grover, Khyati
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1096 - 1100
  • [8] Image Forgery Detection Using Cryptography and Deep Learning
    Oke, Ayodeji
    Babaagba, Kehinde O.
    BIG DATA TECHNOLOGIES AND APPLICATIONS, EAI INTERNATIONAL CONFERENCE, BDTA 2023, 2024, 555 : 62 - 78
  • [9] A Tale of a Deep Learning Approach to Image Forgery Detection
    Majumder, Md. Taksir Hasan
    Al Islam, A. B. M. Alim
    PROCEEDINGS OF 2018 5TH INTERNATIONAL CONFERENCE ON NETWORKING, SYSTEMS AND SECURITY (NSYSS), 2018, : 102 - 110
  • [10] An Image Forgery Detection Technology Based on Deep Learning
    Zou, Yuqiang
    Liu, Junzhu
    Li, Yicong
    Xie, Yuxuan
    Liu, Bocheng
    Yi, Tingfeng
    Li, Xuan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 353 - 359