Abnormal behavior detection algorithm based on multi-branch convolutional fusion neural network

被引:0
|
作者
Zheng Xu
Yuanyao Lu
机构
[1] North China University of Technology,School of Information Science and Technology
来源
关键词
Abnormal behavior detection; Multi-branch convolution; GRU; Encoder-decoder;
D O I
暂无
中图分类号
学科分类号
摘要
The recognition of abnormal behavior in surveillance video is the focus of current research, which has high research value and broad application possibilities. Its main applications are in the fields of intelligent surveillance, intelligent security, and smart cities, and it is of great significance to study the recognition of abnormal behaviors. Because of the complexity of human movement and the variability of the external environment, the recognition and detection of abnormal behaviors have some challenges. The recognition and detection of abnormal human behaviors in surveillance video still needs further research and development. This paper uses the multi-branch convolutional neural network to extract the spatial features of video frames for the first time, and as an encoder to pass the condensed features to the Gated Recurrent Unit (GRU), which extracts Temporal features from multiple video frames. And then the Gated Recurrent Unit output the result as the decoder. We did a series of comparative experiments on UCF-Crime dataset. And finally, we achieved an accuracy of 86.78% in the test set. The experimental results show that our multi-branch convolutional fusion neural network is better than previous surveillance video abnormal behavior recognition algorithms. At the same time, in order to verify the generalization performance and efficiency of the algorithm, we also conducted an experimental validation on the UCF-101 dataset in this paper, and the results show that the algorithm in this paper can also show a high accuracy rate on the UCF-101 dataset, and the speed of the algorithm is almost close to that of the C3D method with improved accuracy rate, making it possible to develop simple recognition applications based on the algorithm studied in this paper subsequently.
引用
收藏
页码:22723 / 22740
页数:17
相关论文
共 50 条
  • [1] Abnormal behavior detection algorithm based on multi-branch convolutional fusion neural network
    Xu, Zheng
    Lu, Yuanyao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (15) : 22723 - 22740
  • [2] A multi-branch convolutional neural network for snoring detection based on audio
    Dong, Hao
    Wu, Haitao
    Yang, Guan
    Zhang, Junming
    Wan, Keqin
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024,
  • [3] Multi-branch Aggregate Convolutional Neural Network for Image Classification
    Fan, Rui
    Jiang, Pinqun
    Zeng, Shangyou
    Li, Peng
    SERVICE-ORIENTED COMPUTING, ICSOC 2018, 2019, 11434 : 102 - 112
  • [4] Multi-branch sustainable convolutional neural network for disease classification
    Naz, Maria
    Shah, Munam Ali
    Khattak, Hasan Ali
    Wahid, Abdul
    Asghar, Muhammad Nabeel
    Rauf, Hafiz Tayyab
    Khan, Muhammad Attique
    Ameer, Zoobia
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1621 - 1633
  • [5] A Multi-branch Feature Fusion Model Based on Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Jinli
    Chen, Ziqiang
    Ji, Yuanfa
    Sun, Xiyan
    Bai, Yang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 147 - 156
  • [6] Multi-branch fusion graph neural network based on multi-head attention for childhood seizure detection
    Li, Yang
    Yang, Yang
    Song, Shangling
    Wang, Hongjun
    Sun, Mengzhou
    Liang, Xiaoyun
    Zhao, Penghui
    Wang, Baiyang
    Wang, Na
    Sun, Qiyue
    Han, Zijuan
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [7] A multi-branch multi-scale convolutional neural network using automatic detection of fetal arrhythmia
    Kanna, S. K. Rajesh
    Shajin, Francis H.
    Rajesh, P.
    Mannepalli, Kasiprasad
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 87 - 96
  • [8] A Modularized Architecture of Multi-Branch Convolutional Neural Network for Image Captioning
    He, Shan
    Lu, Yuanyao
    ELECTRONICS, 2019, 8 (12)
  • [9] Multi-branch convolutional neural network for multiple sclerosis lesion segmentation
    Aslani, Shahab
    Dayan, Michael
    Storelli, Loredana
    Filippi, Massimo
    Murino, Vittorio
    Rocca, Maria A.
    Sona, Diego
    NEUROIMAGE, 2019, 196 : 1 - 15
  • [10] A multi-branch convolutional neural network with density map for aphid counting
    Li, Rui
    Wang, Rujing
    Xie, Chengjun
    Chen, Hongbo
    Long, Qi
    Liu, Liu
    Zhang, Jie
    Chen, Tianjiao
    Hu, Haiying
    Jiao, Lin
    Du, Jianming
    Liu, Haiyun
    BIOSYSTEMS ENGINEERING, 2022, 213 : 148 - 161