Evaluation of Monotone DNF Formulas

被引:0
|
作者
Sarah R. Allen
Lisa Hellerstein
Devorah Kletenik
Tonguç Ünlüyurt
机构
[1] Carnegie Mellon University,
[2] NYU School of Engineering,undefined
[3] Brooklyn College,undefined
[4] Sabanci University,undefined
来源
Algorithmica | 2017年 / 77卷
关键词
DNF formulas; Sequential testing; Stochastic boolean function evaluation; Approximation algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Stochastic boolean function evaluation (SBFE) is the problem of determining the value of a given boolean function f on an unknown input x, when each bit xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} of x can only be determined by paying a given associated cost ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_i$$\end{document}. Further, x is drawn from a given product distribution: for each xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}, Pr[xi=1]=pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{Pr}[x_i=1] = p_i$$\end{document} and the bits are independent. The goal is to minimize the expected cost of evaluation. In this paper, we study the complexity of the SBFE problem for classes of DNF formulas. We consider both exact and approximate versions of the problem for subclasses of DNF, for arbitrary costs and product distributions, and for unit costs and/or the uniform distribution.
引用
收藏
页码:661 / 685
页数:24
相关论文
共 50 条
  • [1] Evaluation of Monotone DNF Formulas
    Allen, Sarah R.
    Hellerstein, Lisa
    Kletenik, Devorah
    Unluyurt, Tonguc
    ALGORITHMICA, 2017, 77 (03) : 661 - 685
  • [2] Extraction of coverings as monotone DNF formulas
    Hirata, K
    Nagazumi, R
    Harao, M
    DISCOVERY SCIENCE, PROCEEDINGS, 2003, 2843 : 166 - 179
  • [3] Complexity of DNF and isomorphism of monotone formulas
    Goldsmith, J
    Hagen, M
    Mundhenk, M
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2005, PROCEEDINGS, 2005, 3618 : 410 - 421
  • [4] Extracting minimal and closed monotone DNF formulas
    Shima, Y
    Mitsuishi, S
    Hirata, K
    Harao, M
    DISCOVERY SCIENCE, PROCEEDINGS, 2004, 3245 : 298 - 305
  • [5] ON LEARNING MONOTONE DNF FORMULAS UNDER UNIFORM DISTRIBUTIONS
    KUCERA, L
    MARCHETTISPACCAMELA, A
    PROTASI, M
    INFORMATION AND COMPUTATION, 1994, 110 (01) : 84 - 95
  • [6] Complexity of DNF minimization and isomorphism testing for monotone formulas
    Goldsmith, Judy
    Hagen, Matthias
    Mundhenk, Martin
    INFORMATION AND COMPUTATION, 2008, 206 (06) : 760 - 775
  • [7] The learnability of exclusive-or expansions based on monotone DNF formulas
    Takimoto, E
    Sakai, Y
    Maruoka, A
    THEORETICAL COMPUTER SCIENCE, 2000, 241 (1-2) : 37 - 50
  • [8] Learning monotone log-term DNF formulas under the uniform distribution
    Sakai, Y
    Maruoka, A
    THEORY OF COMPUTING SYSTEMS, 2000, 33 (01) : 17 - 33
  • [9] ON THE LEARNABILITY OF MONOTONE K-MU-DNF FORMULAS UNDER PRODUCT DISTRIBUTIONS
    FLAMMINI, M
    INFORMATION PROCESSING LETTERS, 1994, 52 (03) : 167 - 173
  • [10] Learning Monotone Log-Term DNF Formulas under the Uniform Distribution
    Y. Sakai
    A. Maruoka
    Theory of Computing Systems, 2000, 33 : 17 - 33