Some Theorems of Approximation Theory in Weighted Smirnov Classes with Variable Exponent

被引:0
|
作者
Ahmet Testici
机构
[1] Balikesir University,Department of Mathematics
关键词
Muckenhoupt weights; Matrix transforms; Weighted variable exponent Smirnov classes; Direct and inverse theorems; Faber series; Faber operators; 30E10; 41A10; 41A30;
D O I
暂无
中图分类号
学科分类号
摘要
Let G⊂C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ G\subset {\mathbb {C}} }$$\end{document} be a Jordan domain with rectifiable Dini smooth boundary Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document}. In this work, we investigate approximation properties of matrix transforms constructed via Faber series in weighted Smirnov classes with variable exponent. Moreover, direct and inverse theorems of approximation theory in weighted Smirnov classes with variable exponent are proved and some results related to constructive characterization in generalized Lipschitz classes are obtained.
引用
收藏
页码:39 / 61
页数:22
相关论文
共 50 条