Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation

被引:0
|
作者
A. J. A. Ramos
M. W. P. Souza
机构
[1] Federal University of Pará,Interdisciplinary Innovation Laboratory
[2] Federal University of Pará, LabX, Department of Mathematics
关键词
Observability inequality; Stabilization; Transmission problem; Wave equation; Primary 99Z99; Secondary 00A00;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we have studied the transmission problem of a system of hyperbolic equations consisting of a free wave equation and a wave equation with dissipation on the boundary, each one acting on a part of its one-dimensional domain. This paper proves the equivalence between the exponential stability previously proven by Liu and Williams (Bull Aust Math Soc 97:305–327, 1998) and the inequality observability on the boundary as a result of this paper. First of all, we have built an auxiliary problem on where we extracted some slogans to be used later. Then we have introduced a number X>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}>0$$\end{document} representing the difference between the speed of wave propagation in each part of the domain, and we proved one observability inequality on the boundary. Finally, we proved the equivalence between the two properties.
引用
收藏
相关论文
共 50 条
  • [1] Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation
    Ramos, A. J. A.
    Souza, M. W. P.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02):
  • [2] Equivalence between exponential stabilization and boundary observability for swelling problem
    Ramos, A. J. A.
    Apalara, T. A.
    Freitas, M. M.
    Araujo, M. L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (01)
  • [3] Observability and stabilization of the wave equation with moving boundary or pointwise feedback
    Ammari, Kais
    Bchatnia, Ahmed
    El Mufti, Karim
    IDENTIFICATION AND CONTROL: SOME NEW CHALLENGES, 2020, 757 : 91 - 107
  • [4] Equivalence between internal observability and exponential stabilization for suspension bridge problem
    Zheng, Yasi
    Liu, Wenjun
    Liu, Yadong
    RICERCHE DI MATEMATICA, 2022, 71 (02) : 711 - 721
  • [5] Equivalence between internal observability and exponential stabilization for suspension bridge problem
    Yasi Zheng
    Wenjun Liu
    Yadong Liu
    Ricerche di Matematica, 2022, 71 : 711 - 721
  • [6] Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect
    Ramos, A. J. A.
    Freitas, M. M.
    Almeida, D. S.
    Jesus, S. S.
    Moura, T. R. S.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [7] Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect
    A. J. A. Ramos
    M. M. Freitas
    D. S. Almeida
    S. S. Jesus
    T. R. S. Moura
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [8] Equivalence between the internal observability and equation
    LIU Wen-jun
    TU Zhi-yu
    Applied Mathematics:A Journal of Chinese Universities, 2024, 39 (01) : 89 - 97
  • [9] BOUNDARY OBSERVABILITY FOR THE VISCOELASTIC WAVE EQUATION
    Green, Walton
    Liu, Shitao
    Mitkovski, Mishko
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (03) : 1629 - 1645
  • [10] BOUNDARY OBSERVABILITY OF THE WAVE-EQUATION
    HO, LF
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (12): : 443 - 446