On Some Generalizations of the Choquet Integral

被引:2
|
作者
Bustince, Humberto [1 ]
Fernandez, Javier [1 ]
Horanska, L'ubomira [2 ]
Mesiar, Radko [3 ]
Stupnanova, Andrea [3 ]
机构
[1] Univ Publ Navarra, Inst Smart Cities, Dept Stat Comp Sci & Math, Campus Arrosadia S-N,POB 31006, Pamplona, Spain
[2] Slovak Univ Technol Bratislava, Fac Chem & Food Technol, Inst Informat Engn Automat & Math, Radlinskeho 9, Bratislava 81237, Slovakia
[3] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Radlinskeho 11, Bratislava 81005 1, Slovakia
来源
NEW TRENDS IN AGGREGATION THEORY | 2019年 / 981卷
关键词
Aggregation function; Choquet integral; Capacity; Mobius transform; DISCRETE CHOQUET;
D O I
10.1007/978-3-030-19494-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the present paper we survey several generalizations of the discrete Choquet integrals and we propose and study a new one. Our proposal is based on the Lov ' asz extension formula, in which we replace the product operator by some binary function F obtaining a new n-ary function J(m)(F). We characterize all functions F yielding, for all capacities m, aggregation functions J(m)(F) with a priori given diagonal section.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 50 条