A scalable multiphysics algorithm for massively parallel direct numerical simulations of electrophoretic motion

被引:6
|
作者
Bartuschat, Dominik [1 ]
Ruede, Ulrich [1 ,2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Lehrstuhl Syst Simulat, Cauerstr 11, D-91058 Erlangen, Germany
[2] CERFACS, Parallel Algorithms Grp, 42 Ave Gaspard Coriolis, F-31057 Toulouse, France
关键词
Parallel simulation; Electrokinetic flow; Electrophoresis; Fluid-particle interaction; MPI; LATTICE-BOLTZMANN METHOD; HYDRODYNAMIC INTERACTIONS; COMPUTER-SIMULATION; PARTICLE; FLOW; DEPOSITION; DYNAMICS; EQUATION; SYSTEMS; SPHERES;
D O I
10.1016/j.jocs.2018.05.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a novel coupled algorithm for massively parallel direct numerical simulations of electrophoresis in microfluidic flows. This multiphysics algorithm employs an Eulerian description of fluid and ions, combined with a Lagrangian representation of moving charged particles. The fixed grid facilitates efficient solvers and the employed lattice Boltzmann method can efficiently handle complex geometries. Validation experiments with more than 70000 time steps are presented, together with scaling experiments with over 4 x 10(6) particles and 1.96 x 10(11) grid cells for both hydrodynamics and electric potential. We achieve excellent performance and scaling on up to 65 536 cores of a current supercomputer. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 167
页数:21
相关论文
共 50 条
  • [1] 3.0-MOOSE: Enabling massively parallel multiphysics simulations
    Giudicelli, Guillaume
    Lindsay, Alexander
    Harbour, Logan
    Icenhour, Casey
    Li, Mengnan
    Hansel, Joshua E.
    German, Peter
    Behne, Patrick
    Marin, Oana
    Stogner, Roy H.
    Miller, Jason M.
    Schwen, Daniel
    Wang, Yaqi
    Munday, Lynn
    Schunert, Sebastian
    Spencer, Benjamin W.
    Yushu, Dewen
    Recuero, Antonio
    Prince, Zachary M.
    Nezdyur, Max
    Hu, Tianchen
    Miao, Yinbin
    Jung, Yeon Sang
    Matthews, Christopher
    Novak, April
    Langley, Brandon
    Truster, Timothy
    Nobre, Nuno
    Alger, Brian
    Andrs, David
    Kong, Fande
    Carlsen, Robert
    Slaughter, Andrew E.
    Peterson, John W.
    Gaston, Derek
    Permann, Cody
    SOFTWAREX, 2024, 26
  • [2] A scalable and extensible checkpointing scheme for massively parallel simulations
    Kohl, Nils
    Hoetzer, Johannes
    Schornbaum, Florian
    Bauer, Martin
    Godenschwager, Christian
    Koestler, Harald
    Nestler, Britta
    Ruede, Ulrich
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2019, 33 (04): : 571 - 589
  • [3] An efficient parallel coupling method for multiphysics numerical simulations
    HPCC and Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
    Jisuanji Xuebao, 2007, 9 (1559-1566):
  • [4] Numerical Simulations of Astrophysical Problems on Massively Parallel Supercomputers
    Kulikov, Igor
    Chernykh, Igor
    Glinsky, Boris
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [5] Numerical simulations of astrophysical problems on massively parallel supercomputer
    Kulikov, Igor
    Glinsky, Boris
    Chernykh, Igor
    Nenashev, Vladislav
    Shmelev, Alexey
    2016 11TH INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGY (IFOST), PTS 1 AND 2, 2016,
  • [6] GPU acceleration of CaNS for massively-parallel direct numerical simulations of canonical fluid flows
    Costa, Pedro
    Phillips, Everett
    Brandt, Luca
    Fatica, Massimiliano
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 : 502 - 511
  • [7] A direct coupled cluster algorithm for massively parallel computers
    Kobayashi, R
    Rendell, AP
    CHEMICAL PHYSICS LETTERS, 1997, 265 (1-2) : 1 - 11
  • [8] Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations
    Bisetti, Fabrizio
    Attili, Antonio
    Pitsch, Heinz
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2022):
  • [9] Scalable Massively Parallel Learning of Multiple Linear Regression Algorithm with MapReduce
    Adjout Rehab, Moufida
    Boufares, F.
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 2, 2015, : 41 - 47
  • [10] A Scalable Massively Parallel Motion and Disparity Estimation Scheme for Multiview Video Coding
    Jiang, Caoyang
    Nooshabadi, Saeid
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (02) : 346 - 359