Extracting Crystal Chemistry from Amorphous Carbon Structures

被引:83
作者
Deringer, Volker L. [1 ,2 ]
Csanyi, Gabor [1 ]
Proserpio, Davide M. [3 ,4 ]
机构
[1] Univ Cambridge, Engn Lab, Trumpington St, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
[3] Univ Milan, Dipartimento Chim, Milan, Italy
[4] Samara Univ, SCTMS, Samara, Russia
基金
英国工程与自然科学研究理事会;
关键词
ab initio calculations; carbon allotropes; high-throughput screening; machine learning; solid-state structures; STRUCTURE PREDICTION; 1ST PRINCIPLES; ALLOTROPES; VALIDATION; FRAMEWORKS; SODIUM; NETS;
D O I
10.1002/cphc.201700151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon allotropes have been explored intensively by ab initio crystal structure prediction, but such methods are limited by the large computational cost of the underlying density functional theory (DFT). Here we show that a novel class of machine-learning-based interatomic potentials can be used for random structure searching and readily predicts several hitherto unknown carbon allotropes. Remarkably, our model draws structural information from liquid and amorphous carbon exclusively, and so does not have any prior knowledge of crystalline phases: it therefore demonstrates true transferability, which is a crucial prerequisite for applications in chemistry. The method is orders of magnitude faster than DFT and can, in principle, be coupled with any algorithm for structure prediction. Machine-learning models therefore seem promising to enable large-scale structure searches in the future.
引用
收藏
页码:873 / 877
页数:5
相关论文
共 64 条
[1]   Crystal Structure of Cold Compressed Graphite [J].
Amsler, Maximilian ;
Flores-Livas, Jose A. ;
Lehtovaara, Lauri ;
Balima, Felix ;
Ghasemi, S. Alireza ;
Machon, Denis ;
Pailhes, Stephane ;
Willand, Alexander ;
Caliste, Damien ;
Botti, Silvana ;
San Miguel, Alfonso ;
Goedecker, Stefan ;
Marques, Miguel A. L. .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)
[2]  
[Anonymous], 2008, Angewandte Chemie
[3]   An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2 [J].
Artrith, Nongnuch ;
Urban, Alexander .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 :135-150
[4]   From zeolite nets to sp3 carbon allotropes: a topology-based multiscale theoretical study [J].
Baburin, Igor A. ;
Proserpio, Davide M. ;
Saleev, Vladimir A. ;
Shipilova, Alexandra V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (02) :1332-1338
[5]  
BALABAN AT, 1968, REV ROUM CHIM, V13, P231
[6]  
BALABAN AT, 1968, REV ROUM CHIM, V13, P1233
[7]   Determining pressure-temperature phase diagrams of materials [J].
Baldock, Robert J. N. ;
Partay, Livia B. ;
Bartok, Albert P. ;
Payne, Michael C. ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2016, 93 (17)
[8]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[9]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[10]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)