THE RAMSEY NUMBER FOR THETA GRAPH VERSUS A CLIQUE OF ORDER THREE AND FOUR

被引:3
|
作者
Bataineh, M. S. A. [1 ]
Jaradat, M. M. M. [2 ]
Bateeha, M. S. [1 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
[2] Quatar Univ, Dept Math Stat & Phys, Doha, Qatar
关键词
Ramsey number; independent set; theta graph; complete graph;
D O I
10.7151/dmgt.1730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any two graphs F-1 and F-2 the graph Ramsey number r(F-1, F-2) is the smallest positive integer N with the property that every graph on at least N vertices contains F-1 or its complement contains F-2 as a subgraph. In this paper, we consider the Ramsey numbers for theta-complete graphs. We determine r(theta(n), K-m) for m = 2,3,4 and n > m. More specifically, we establish that r(theta(n), K-m) = (n - 1)(m - 1) + 1 for m = 3,4 and n> m.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [1] On the Ramsey Number for Theta Graphs Versus the Complete Graph of Order Six
    Baniabedalruhman, A.
    Jaradat, M. M. M.
    Bataineh, M. S.
    Jaradat, A. M. M.
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [2] The Ramsey number for a cycle of length six versus a clique of order eight
    Chen, Yaojun
    Cheng, T. C. Edwin
    Xu, Ran
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) : 8 - 12
  • [3] ON THE RAMSEY NUMBER OF TREES VERSUS GRAPHS WITH LARGE CLIQUE NUMBER
    GOULD, RJ
    JACOBSON, MS
    JOURNAL OF GRAPH THEORY, 1983, 7 (01) : 71 - 78
  • [4] The Ramsey number of the clique and the hypercube
    Pontiveros, Gonzalo Fiz
    Griffiths, Simon
    Morris, Robert
    Saxton, David
    Skokan, Jozef
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 : 680 - 702
  • [5] BOUNDS FOR THE RAMSEY NUMBER OF A DISCONNECTED GRAPH VERSUS ANY GRAPH
    GOULD, RJ
    JACOBSON, MS
    JOURNAL OF GRAPH THEORY, 1982, 6 (04) : 413 - 417
  • [6] Induced Ramsey number for a star versus a fixed graph
    Axenovich, Maria
    Gorgol, Izolda
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (01):
  • [7] Minimum Clique Number, Chromatic Number, and Ramsey Numbers
    Liu, Gaku
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [8] A note on multicolor Ramsey number of small odd cycles versus a large clique
    Xu, Zixiang
    Ge, Gennian
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [9] The Ramsey numbers for a cycle of length six or seven versus a clique of order seven
    Cheng, T. C. Edwin
    Chen, Yaojun
    Zhang, Yunqing
    Ng, C. T.
    DISCRETE MATHEMATICS, 2007, 307 (9-10) : 1047 - 1053
  • [10] The Ramsey Number for Tree Versus Wheel with Odd Order
    Yusuf Hafidh
    Edy Tri Baskoro
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2151 - 2160