Lie-nijenhuis Bialgebroids

被引:2
|
作者
Drummond, Thiago [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat, Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, Brazil
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2022年 / 73卷 / 03期
关键词
POISSON; GROUPOIDS; TANGENT; LIFTS;
D O I
10.1093/qmath/haab048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce Lie-Nijenhuis bialgebroids as Lie bialgebroids endowed with an additional derivation-like object. They give a complete infinitesimal description of Poisson-Nijenhuis (PN) groupoids, and key examples include PN manifolds, holomorphic Lie bialgebroids and flat Lie bialgebra bundles. To achieve our goal we develop a theory of 'generalized derivations' and their duality, extending the well-established theory of derivations on vector bundles.
引用
收藏
页码:849 / 883
页数:35
相关论文
共 50 条
  • [1] Dirac-Nijenhuis structures on Lie Bialgebroids
    Liu, BK
    He, LG
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 55 (02) : 179 - 198
  • [2] Quasi-Lie Bialgebroids, Dirac Structures, and Deformations of Poisson Quasi-Nijenhuis Manifolds
    Luiz, M. do Nascimento
    Mencattini, I.
    Pedroni, M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (02):
  • [3] Integration of Lie bialgebroids
    Mackenzie, KCH
    Xu, P
    TOPOLOGY, 2000, 39 (03) : 445 - 467
  • [4] The local structure of Lie bialgebroids
    Liu, ZJ
    Xu, P
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (01) : 15 - 28
  • [5] LIE BIALGEBROIDS AND POISSON GROUPOIDS
    MACKENZIE, KCH
    XU, P
    DUKE MATHEMATICAL JOURNAL, 1994, 73 (02) : 415 - 452
  • [6] The Local Structure of Lie Bialgebroids
    Zhang-Ju Liu
    Ping Xu
    Letters in Mathematical Physics, 2002, 61 : 15 - 28
  • [7] Manin triples for lie bialgebroids
    Liu, ZJ
    Weinstein, A
    Xu, P
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (03) : 547 - 574
  • [8] Exact Lie bialgebroids and Poisson groupoids
    Liu, ZJ
    Xu, P
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (01) : 138 - 145
  • [9] Reduction of Poisson-Nijenhuis Lie algebroids to symplectic-Nijenhuis Lie algebroids with a nondegenerate Nijenhuis tensor
    De Nicola, Antonio
    Carlos Marrero, Juan
    Padron, Edith
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (42)
  • [10] Dirac structures for generalized Lie bialgebroids
    da Costa, JMN
    Clemente-Gallardo, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (07): : 2671 - 2692