Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems

被引:105
|
作者
Zhang, Yi [1 ]
Zhu, Haihua [1 ]
Tang, Dunbing [1 ]
Zhou, Tong [1 ]
Gui, Yong [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
Flexiblejob-shopschedulingproblem; Smartmanufacturing; Multi-agentmanufacturingsystem; Reinforcementlearning; Proximalpolicyoptimization; ALGORITHM; OPTIMIZATION; ARCHITECTURE; ADACOR;
D O I
10.1016/j.rcim.2022.102412
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Personalized orders bring challenges to the production paradigm, and there is an urgent need for the dynamic responsiveness and self-adjustment ability of the workshop. Traditional dispatching rules and heuristic algo-rithms solve the production planning and control problems by making schedules. However, the previous methods cannot work well in a changeable workshop environment when encountering a large number of stochastic disturbances of orders and resources. Recently, the potential of artificial intelligence (AI) algorithms in solving the dynamic scheduling problem has attracted researchers' attention. Therefore, this paper presents a multi -agent manufacturing system based on deep reinforcement learning (DRL), which integrates the self -organization mechanism and self-learning strategy. Firstly, the manufacturing equipment in the workshop is constructed as an equipment agent with the support of edge computing node, and an improved contract network protocol (CNP) is applied to guide the cooperation and competition among multiple agents, so as to complete personalized orders efficiently. Secondly, a multi-layer perceptron is employed to establish the decision-making module called AI scheduler inside the equipment agent. According to the perceived workshop state information, AI scheduler intelligently generates an optimal production strategy to perform task allocation. Then, based on the collected sample trajectories of scheduling process, AI scheduler is periodically trained and updated through the proximal policy optimization (PPO) algorithm to improve its decision-making performance. Finally, in the multi -agent manufacturing system testbed, dynamic events such as stochastic job insertions and unpredictable machine failures are considered in the verification experiments. The experimental results show that the proposed method is capable of obtaining the scheduling solutions that meet various performance metrics, as well as dealing with resource or task disturbances efficiently and autonomously.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Multi-Agent Reinforcement Learning for Job Shop Scheduling in Flexible Manufacturing Systems
    Baer, Schirin
    Bakakeu, Jupiter
    Meyes, Richard
    Meisen, Tobias
    2019 SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR INDUSTRIES (AI4I 2019), 2019, : 22 - 25
  • [2] Multi-Agent Reinforcement Learning for Job Shop Scheduling in Dynamic Environments
    Pu, Yu
    Li, Fang
    Rahimifard, Shahin
    SUSTAINABILITY, 2024, 16 (08)
  • [3] A deep multi-agent reinforcement learning approach to solve dynamic job shop scheduling problem
    Liu, Renke
    Piplani, Rajesh
    Toro, Carlos
    COMPUTERS & OPERATIONS RESEARCH, 2023, 159
  • [4] A Multi-Agent Reinforcement Learning Approach to the Dynamic Job Shop Scheduling Problem
    Inal, Ali Firat
    Sel, Cagri
    Aktepe, Adnan
    Turker, Ahmet Kursad
    Ersoz, Suleyman
    SUSTAINABILITY, 2023, 15 (10)
  • [5] DeepMAG: Deep reinforcement learning with multi-agent graphs for flexible job shop scheduling
    Zhang, Jia-Dong
    He, Zhixiang
    Chan, Wing -Ho
    Chow, Chi -Yin
    KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [6] Multi-Agent Reinforcement Learning for Extended Flexible Job Shop Scheduling
    Peng, Shaoming
    Xiong, Gang
    Yang, Jing
    Shen, Zhen
    Tamir, Tariku Sinshaw
    Tao, Zhikun
    Han, Yunjun
    Wang, Fei-Yue
    MACHINES, 2024, 12 (01)
  • [7] Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems
    Martinez Jimenez, Yailen
    Coto Palacio, Jessica
    Nowe, Ann
    OPTIMIZATION AND LEARNING, 2020, 1173 : 3 - 12
  • [8] Job Shop Dynamic Scheduling Model Based on Multi-Agent
    He, Li
    Liu, Yong-xian
    Xie, Hua-long
    Zhang, Yu
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 829 - +
  • [9] Application of Multi-agent Reinforcement Learning to the Dynamic Scheduling Problem in Manufacturing Systems
    Heik, David
    Bahrpeyma, Fouad
    Reichelt, Dirk
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT II, 2024, 14506 : 237 - 254
  • [10] A reinforcement learning-based approach for solving multi-agent job shop scheduling problem
    Dong, Zhuoran
    Ren, Tao
    Qi, Fang
    Weng, Jiacheng
    Bai, Danyu
    Yang, Jie
    Wu, Chin-Chia
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024,