Bearing Fault Diagnosis Based on Optimal Time-Frequency Representation Method

被引:19
|
作者
Ruiz Quinde, Israel [1 ]
Chuya Sumba, Jorge [1 ]
Escajeda Ochoa, Luis [1 ]
Antonio, Jr. [1 ]
Guevara, Vallejo [1 ]
Morales-Menendez, Ruben [1 ]
机构
[1] Tecnol Monterrey, Monterrey 64489, NL, Mexico
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 11期
关键词
Wigner-Ville Distribution; Fault Diagnosis; Bearing Spindles; DECOMPOSITION;
D O I
10.1016/j.ifacol.2019.09.140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wigner-Ville Distribution (WVD) is probably the most used non-linear time-frequency distribution for signal processing in fault diagnosis, due to the advantages of excellent resolution and localization in time-frequency domain. However, the presence of cross terms when they are applied to multicomponent signals can give misleading interpretations. A methodology based on Local Mean Decomposition (LMD) and WVD is proposed to get more reliable bearing fault diagnosis based on vibration signals. Kullback-Leibler Divergence (KLD) guides the selection of the optimal frequency band with the most relevant information about the fault. Early results based on experimental data show successful diagnosis. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 199
页数:6
相关论文
共 50 条
  • [1] A Deep Learning Method for Bearing Fault Diagnosis Based on Time-frequency Image
    Wang, Jianyu
    Mo, Zhenling
    Zhang, Heng
    Miao, Qiang
    IEEE ACCESS, 2019, 7 : 42373 - 42383
  • [2] Time-frequency analysis method of bearing fault diagnosis based on the generalized S transformation
    Cai, Jianhua
    Xiao, Yongliang
    JOURNAL OF VIBROENGINEERING, 2017, 19 (06) : 4221 - 4230
  • [3] Applications of Fractional Lower Order Time-frequency Representation to Machine Bearing Fault Diagnosis
    Long, Junbo
    Wang, Haibin
    Li, Peng
    Fan, Hongshe
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2017, 4 (04) : 734 - 750
  • [4] Locomotive bearing fault diagnosis based on deep time-frequency features
    Zhang L.
    Zhen C.-Z.
    Xiong G.-L.
    Wang C.-B.
    Xu T.-P.
    Tu W.-B.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2021, 21 (06): : 247 - 258
  • [5] Bearing Fault Diagnosis Based on Subband Time-Frequency Texture Tensor
    Bo, Lin
    Xu, Guanji
    Liu, Xiaofeng
    Lin, Jing
    IEEE ACCESS, 2019, 7 : 37611 - 37619
  • [6] Applications of Fractional Lower Order Time-frequency Representation to Machine Bearing Fault Diagnosis
    Junbo Long
    Haibin Wang
    Peng Li
    Hongshe Fan
    IEEE/CAA Journal of Automatica Sinica, 2017, 4 (04) : 734 - 750
  • [7] The fault diagnosis of the rolling bearing based on the LMD and time-frequency analysis
    Ma, Jun
    Wu, Jiande
    Yuan, Xuyi
    International Journal of Control and Automation, 2013, 6 (04): : 357 - 376
  • [8] Multiscale Time-Frequency Sparse Transformer Based on Partly Interpretable Method for Bearing Fault Diagnosis
    Che, Shouquan
    Lu, Jianfeng
    Bao, Congwang
    Zhang, Caihong
    Liu, Yongzhi
    SHOCK AND VIBRATION, 2023, 2023
  • [9] A method of fault detection and diagnosis based on time-frequency analysis
    Liang, YingBo
    Zhang, LiHong
    Li, Jin
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 1407 - 1410
  • [10] Study on Fault Diagnosis of Rolling Bearing Based on Time-Frequency Generalized Dimension
    Yuan, Yu
    Zhao, Xing
    Fei, Jiyou
    Zhao, Yulong
    Wang, Jiahui
    SHOCK AND VIBRATION, 2015, 2015