On an open problem concerning total domination critical graphs

被引:11
|
作者
Mojdeh, Doost Ali
Rad, Nader Jafari
机构
[1] Univ Mazandaran, Dept Math, Babol Sar, Iran
[2] Inst Studies Theoret Phys & Math, Tehran, Iran
关键词
total domination; vertex critical; diameter;
D O I
10.1016/j.exmath.2006.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G - v is less than the total domination number of G. We call these graphs gamma(1)-critical. If such a graph G has total domination number k, we call it k-gamma(1)-critical. We verify an open problem of k-gamma(1)-critical graphs and obtain some results on the characterization of total domination critical graphs of order n = Delta(G)(gamma(1)(G) - 1) + 1. (c) 2006 Elsevier GmbH. All rights reserved.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [1] On the existence problem of the total domination vertex critical graphs
    Sohn, Moo Young
    Kim, Dongseok
    Kwon, Young Soo
    Lee, Jaeun
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (01) : 46 - 52
  • [2] Critical graphs with respect to total domination and connected domination
    Kaemawichanurat, P.
    Caccetta, L.
    Ananchuen, N.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 1 - 13
  • [3] Game total domination critical graphs
    Henning, Michael A.
    Klavzar, Sandi
    Rall, Douglas F.
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 28 - 37
  • [4] Total domination edge critical graphs
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    UTILITAS MATHEMATICA, 1998, 54 : 229 - 240
  • [5] On a conjecture concerning total domination subdivision number in graphs
    Kosari, S.
    Shao, Z.
    Khoeilar, R.
    Karami, H.
    Sheikholeslami, S. M.
    Hao, G.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 154 - 157
  • [6] WEAKLY CONNECTED TOTAL DOMINATION CRITICAL GRAPHS
    Sandueta, Elsie P.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 25 (02): : 267 - 274
  • [7] Perfect Matchings in Total Domination Critical Graphs
    Michael A. Henning
    Anders Yeo
    Graphs and Combinatorics, 2011, 27 : 685 - 701
  • [8] Total domination dot-critical graphs
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) : 104 - 111
  • [9] On questions on (total) domination vertex critical graphs
    Mojdeh, Doost Ali
    Hasni, Roslan
    ARS COMBINATORIA, 2010, 96 : 405 - 419
  • [10] The diameter of total domination vertex critical graphs
    Goddard, W
    Haynes, TW
    Henning, MA
    van der Merwe, LC
    DISCRETE MATHEMATICS, 2004, 286 (03) : 255 - 261