An Empirical-Data Hybrid Driven Approach for Remaining Useful Life prediction of lithium-ion batteries considering capacity diving

被引:70
|
作者
Chen, Dan [1 ]
Meng, Jinhao [1 ]
Huang, Huanyang [1 ]
Wu, Ji [2 ]
Liu, Ping [3 ]
Lu, Jiwu [3 ]
Liu, Tianqi [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
[2] Hefei Univ Technol, Dept Vehicle Engn, Hefei 230009, Peoples R China
[3] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
基金
中国博士后科学基金;
关键词
Remaining useful life; Empirical degradation model; Gaussian process regression; Particle filter; STATE-OF-CHARGE; AGING MECHANISMS; PARTICLE FILTER; CELLS; DEGRADATION; MODEL;
D O I
10.1016/j.energy.2022.123222
中图分类号
O414.1 [热力学];
学科分类号
摘要
Considering the variabilities among each cell especially during the battery accelerated decay period, the parameterized empirical model is doubtful for predicting the Lithium-ion (Li-ion) battery Remaining Useful Life (RUL). Thus, an Empirical-Data Hybrid Driven Approach (EDHDA) is proposed to utilize both the prior knowledge and the historical dataset for the lifetime prediction of the Li-ion battery under capacity diving conditions. A polynomial-based model is firstly proposed to provide the basic accuracy for the EDHDA. Meanwhile, an improved Gaussian Process Regression (GPR) with a partial charging voltage profile is designed to make full use of the operational dataset. The EDHDA is then established with a dual Particle Filter (PF) framework combining the advantages of the above two methods. In this way, accurate estimations of the current capacity can be obtained by fusing the two models, even under capacity diving conditions. The parameters of the empirical model can also be updated according to the fused capacity to obtain accurate RUL predictions with uncertainty levels. Experimental results show that the proposed EDHDA has a high RUL prediction accuracy under capacity diving even with limited data.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-Ion Batteries
    Gao, Kaidi
    Xu, Jingyun
    Li, Zuxin
    Cai, Zhiduan
    Jiang, Dongming
    Zeng, Aigang
    ACS OMEGA, 2022, 7 (30): : 26701 - 26714
  • [2] Hybrid Data-Driven Approach for Predicting the Remaining Useful Life of Lithium-Ion Batteries
    Li, Yuanjiang
    Li, Lei
    Mao, Runze
    Zhang, Yi
    Xu, Song
    Zhang, Jinglin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 2789 - 2805
  • [3] A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Yang, Wen-An
    Xiao, Maohua
    Zhou, Wei
    Guo, Yu
    Liao, Wenhe
    SHOCK AND VIBRATION, 2016, 2016
  • [4] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Hybrid Ensembles Allied with Data-Driven Approach
    Zhao, Shuai
    Sun, Daming
    Liu, Yan
    Liang, Yuqi
    ENERGIES, 2025, 18 (05)
  • [5] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [6] A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries
    Ali, Muhammad Umair
    Zafar, Amad
    Masood, Haris
    Kallu, Karam Dad
    Khan, Muhammad Attique
    Tariq, Usman
    Kim, Ye Jin
    Chang, Byoungchol
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [7] A Hybrid Method for the Prediction of the Remaining Useful Life of Lithium-Ion Batteries With Accelerated Capacity Degradation
    Cong, Xinwei
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Jiang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 12775 - 12785
  • [8] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [9] Remaining Useful Life Prediction of Lithium-ion Batteries Based on a Hybrid Model
    Lv, Haizhen
    Shen, Dongxu
    Yang, Zhigang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1003 - 1008
  • [10] Lithium-ion batteries Remaining Useful Life Prediction Method Considering Recovery Phenomenon
    Zhang, Zhenyu
    Shen, Dongxu
    Peng, Zhen
    Guan, Yong
    Yuan, Huimei
    Wu, Lifeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (08): : 7149 - 7165