ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL

被引:396
|
作者
Carrillo, J. A. [1 ]
Fornasier, M. [2 ]
Rosado, J. [3 ]
Toscani, G. [4 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, ICREA, Bellaterra 08193, Spain
[2] Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
[4] Univ Pavia, Dept Math, I-27100 Pavia, Italy
关键词
flocking; nonlinear friction equations; mass transportation methods; CONTINUUM-LIMIT; BEHAVIOR; EQUATIONS; PARTICLE;
D O I
10.1137/090757290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the asymptotic behavior of solutions of the continuous kinetic version of flocking by Cucker and Smale [IEEE Trans. Automat. Control, 52 (2007), pp. 852-862], which describes the collective behavior of an ensemble of organisms, animals, or devices. This kinetic version introduced in [S.-Y. Ha and E. Tadmor, Kinet. Relat. Models, 1 (2008), pp. 415-435] is here obtained starting from a Boltzmann-type equation. The large-time behavior of the distribution in phase space is subsequently studied by means of particle approximations and a stability property in distances between measures. A continuous analogue of the theorems of [ F. Cucker and S. Smale, IEEE Trans. Automat. Control, 52 (2007), pp. 852-862] is shown to hold for the solutions on the kinetic model. More precisely, the solutions will concentrate exponentially fast in velocity to the mean velocity of the initial condition, while in space they will converge towards a translational flocking solution.
引用
收藏
页码:218 / 236
页数:19
相关论文
共 50 条
  • [1] CONTROL TO FLOCKING OF THE KINETIC CUCKER-SMALE MODEL
    Piccoli, Benedetto
    Rossi, Francesco
    Trelat, Emmanuel
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (06) : 4685 - 4719
  • [2] FLOCKING OF CUCKER-SMALE MODEL WITH INTRINSIC DYNAMICS
    Ru, Lining
    Xue, Xiaoping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6817 - 6835
  • [3] Hydrodynamic limit of the kinetic Cucker-Smale flocking model
    Karper, Trygve K.
    Mellet, Antoine
    Trivisa, Konstantina
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (01): : 131 - 163
  • [4] Robustness of Cucker-Smale flocking model
    Canale, Eduardo
    Dalmao, Federico
    Mordecki, Ernesto
    Souza, Max O.
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (03): : 346 - 350
  • [5] Asymptotic flocking of the relativistic Cucker-Smale model with time delay
    Ahn, Hyunjin
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 29 - 47
  • [6] Flocking and asymptotic velocity of the Cucker-Smale model with processing delay
    Liu, Yicheng
    Wu, Jianhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 53 - 61
  • [7] PHASE TRANSITIONS IN A KINETIC FLOCKING MODEL OF CUCKER-SMALE TYPE
    Barbaro, Alethea B. T.
    Canizo, Jose A.
    Carrillo, Jose A.
    Degond, Pierre
    MULTISCALE MODELING & SIMULATION, 2016, 14 (03): : 1063 - 1088
  • [8] Flocking of the hybrid Cucker-Smale model
    Yan, Jinhua
    Yin, Xiuxia
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (06): : 4016 - 4030
  • [9] ASYMPTOTIC FLOCKING DYNAMICS OF CUCKER-SMALE PARTICLES IMMERSED IN COMPRESSIBLE FLUIDS
    Bae, Hyeong-Ohk
    Choi, Young-Pil
    Ha, Seung-Yeal
    Kang, Moon-Jin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4419 - 4458
  • [10] Asymptotic Flocking for the Cucker-Smale Model with Time Variable Time Delays
    Continelli, Elisa
    ACTA APPLICANDAE MATHEMATICAE, 2023, 188 (01)