Prediction Models for the Clinical Severity of Patients With COVID-19 in Korea: Retrospective Multicenter Cohort Study

被引:15
|
作者
Oh, Bumjo [1 ]
Hwangbo, Suhyun [2 ]
Jung, Taeyeong [2 ]
Min, Kyungha [1 ]
Lee, Chanhee [2 ]
Apio, Catherine [2 ]
Lee, Hyejin [3 ]
Lee, Seungyeoun [4 ]
Moon, Min Kyong [5 ]
Kim, Shin-Woo [6 ]
Park, Taesung [7 ]
机构
[1] Seoul Natl Univ, Dept Family Med, Seoul Metropolitan Govt, Boramae Med Ctr, Seoul, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[3] Seoul Natl Univ, Dept Family Med, Bundang Hosp, Gyeonggi Do, South Korea
[4] Sejong Univ, Dept Math & Stat, Seoul, South Korea
[5] Seoul Natl Univ, Dept Internal Med, Seoul Metropolitan Govt, Boramae Med Ctr, Seoul, South Korea
[6] Kyungpook Natl Univ, Dept Internal Med, Daegu, South Korea
[7] Seoul Natl Univ, Dept Stat, 1 Gwanak Ro, Seoul 08826, South Korea
关键词
clinical decision support system; clinical characteristics; COVID-19; SARS-CoV-2; prognostic tool; severity; LASSO;
D O I
10.2196/25852
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Limited information is available about the present characteristics and dynamic clinical changes that occur in patients with COVID-19 during the early phase of the illness. Objective: This study aimed to develop and validate machine learning models based on clinical features to assess the risk of severe disease and triage for COVID-19 patients upon hospital admission. Methods: This retrospective multicenter cohort study included patients with COVID-19 who were released from quarantine until April 30, 2020, in Korea. A total of 5628 patients were included in the training and testing cohorts to train and validate the models that predict clinical severity and the duration of hospitalization, and the clinical severity score was defined at four levels: mild, moderate, severe, and critical. Results: Out of a total of 5601 patients, 4455 (79.5%), 330 (5.9%), 512 (9.1%), and 301 (5.4%) were included in the mild, moderate, severe, and critical levels, respectively. As risk factors for predicting critical patients, we selected older age, shortness of breath, a high white blood cell count, low hemoglobin levels, a low lymphocyte count, and a low platelet count. We developed 3 prediction models to classify clinical severity levels. For example, the prediction model with 6 variables yielded a predictive power of >0.93 for the area under the receiver operating characteristic curve. We developed a web-based nomogram, using these models. Conclusions: Our prediction models, along with the web-based nomogram, are expected to be useful for the assessment of the onset of severe and critical illness among patients with COVID-19 and triage patients upon hospital admission.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Clinical prediction models in hospitalized patients with COVID-19: A multicenter cohort study
    Vedovati, Maria Cristina
    Barbieri, Greta
    Urbini, Chiara
    D'Agostini, Erika
    Vanni, Simone
    Papalini, Chiara
    Pucci, Giacomo
    Cimini, Ludovica Anna
    Valentino, Alessandro
    Ghiadoni, Lorenzo
    Becattini, Cecilia
    RESPIRATORY MEDICINE, 2022, 202
  • [2] Severity Scores in COVID-19 Pneumonia: a Multicenter, Retrospective, Cohort Study
    Arturo Artero
    Manuel Madrazo
    Mar Fernández-Garcés
    Antonio Muiño Miguez
    Andrés González García
    Anxela Crestelo Vieitez
    Elena García Guijarro
    Eva María Fonseca Aizpuru
    Miriam García Gómez
    María Areses Manrique
    Carmen Martinez Cilleros
    María del Pilar Fidalgo Moreno
    José Loureiro Amigo
    Ricardo Gil Sánchez
    Elisa Rabadán Pejenaute
    Lucy Abella Vázquez
    Ruth Cañizares Navarro
    Marta Nataya Solís Marquínez
    Francisco Javier Carrasco Sánchez
    Julio González Moraleja
    Lorena Montero Rivas
    Joaquín Escobar Sevilla
    María Dolores Martín Escalante
    Ricardo Gómez-Huelgas
    José Manuel Ramos-Rincón
    Journal of General Internal Medicine, 2021, 36 : 1338 - 1345
  • [3] Severity Scores in COVID-19 Pneumonia: a Multicenter, Retrospective, Cohort Study
    Artero, Arturo
    Madrazo, Manuel
    Fernandez-Garces, Mar
    Muino Miguez, Antonio
    Gonzalez Garcia, Andres
    Crestelo Vieitez, Anxela
    Garcia Guijarro, Elena
    Fonseca Aizpuru, Eva Maria
    Garcia Gomez, Miriam
    Areses Manrique, Maria
    Martinez Cilleros, Carmen
    Fidalgo Moreno, Maria del Pilar
    Loureiro Amigo, Jose
    Gil Sanchez, Ricardo
    Rabadan Pejenaute, Elisa
    Abella Vazquez, Lucy
    Canizares Navarro, Ruth
    Solis Marquinez, Marta Nataya
    Carrasco Sanchez, Francisco Javier
    Gonzalez Moraleja, Julio
    Montero Rivas, Lorena
    Escobar Sevilla, Joaquin
    Martin Escalante, Maria Dolores
    Gomez-Huelgas, Ricardo
    Ramos-Rincon, Jose Manuel
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2021, 36 (05) : 1338 - 1345
  • [4] Clinical Outcomes and Severity of Acute Respiratory Distress Syndrome in 1154 COVID-19 Patients: An Experience Multicenter Retrospective Cohort Study
    Al Mutair, Abbas
    Alhumaid, Saad
    Layqah, Laila
    Shamou, Jinan
    Ahmed, Gasmelseed Y.
    Chagla, Hiba
    Alsalman, Khulud
    Alnasser, Fadhah Mohammed
    Thoyaja, Koritala
    Alhuqbani, Waad N.
    Alghadeer, Mohammed
    Al Mohaini, Mohammed
    Almahmoud, Sana
    Al-Tawfiq, Jaffar A.
    Muhammad, Javed
    Al-Jamea, Lamiaa H.
    Woodman, Alexander
    Alsaleh, Ahmed
    Alsedrah, Abdulaziz M.
    Alharbi, Hanan F.
    Saha, Chandni
    Rabaan, Ali A.
    COVID, 2022, 2 (08): : 1102 - 1115
  • [5] Clinical characteristics and outcomes of psoriasis patients with COVID-19: A retrospective, multicenter cohort study in China
    Liu Yanhua
    Xu Zhongrui
    Zhou Jian
    Chen Aijun
    Zhang Junling
    Kang Xiaojing
    Jiang Xian
    Lyu Chengzhi
    Shi Chunrui
    Shi Yuling
    Liu Xiaoming
    Li Fuqiu
    Yang Bin
    Huang Yongmei
    Yu Chen
    Wang Gang
    中华医学杂志英文版, 2024, 137 (14)
  • [6] Clinical characteristics and outcomes of psoriasis patients with COVID-19: A retrospective, multicenter cohort study in China
    Liu, Yanhua
    Xu, Zhongrui
    Zhou, Jian
    Chen, Aijun
    Zhang, Junling
    Kang, Xiaojing
    Jiang, Xian
    Lyu, Chengzhi
    Shi, Chunrui
    Shi, Yuling
    Liu, Xiaoming
    Li, Fuqiu
    Yang, Bin
    Huang, Yongmei
    Yu, Chen
    Wang, Gang
    CHINESE MEDICAL JOURNAL, 2024, 137 (14) : 1736 - 1743
  • [7] Elevated Troponin and Mortality in Patients with COVID-19: A Multicenter Retrospective Cohort Study
    Umeh, Chukwuemeka A.
    Ranchithan, Sobiga
    Watanabe, Kimberly
    Tuscher, Laura
    Gupta, Rahul
    OPEN CARDIOVASCULAR MEDICINE JOURNAL, 2022, 16
  • [8] COVID-19 in pediatric palliative care patients: Multicenter, retrospective cohort study
    Korzeniewska-Eksterowicz, Aleksandra
    Brzezinska, Olga
    Dryja, Urszula
    Matczak, Dominka
    Sopilnyak, Andriy
    Szuszkiewicz, Eugenia
    Przyslo, Lukasz
    Szmyd, Krzystof
    Jablonska, Katarzyna
    Krych, Piotr
    Wojtkow-Zielinska, Agnieszka
    Wasinska, Edyta
    Niedzwiecki, Maciej
    PALLIATIVE MEDICINE, 2024, 38 (01) : 150 - 155
  • [9] Comparison of Clinical Characteristics and Outcomes of Younger and Elderly Patients with Severe COVID-19 in Korea: A Retrospective Multicenter Study
    Seong, Gil Myeong
    Baek, Ae-Rin
    Baek, Moon Seong
    Kim, Won-Young
    Kim, Jin Hyoung
    Lee, Bo Young
    Na, Yong Sub
    Lee, Song-, I
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (12):
  • [10] Venous thromboembolism in COVID-19 patients and prediction model: a multicenter cohort study
    Yi Lee
    Qasim Jehangir
    Pin Li
    Deepthi Gudimella
    Pooja Mahale
    Chun-Hui Lin
    Dinesh R. Apala
    Geetha Krishnamoorthy
    Abdul R. Halabi
    Kiritkumar Patel
    Laila Poisson
    Venugopal Balijepally
    Anupam A. Sule
    Girish B. Nair
    BMC Infectious Diseases, 22