Nonparametric Estimation of the Conditional Distribution Function For Surrogate Data by the Regression Model

被引:0
|
作者
Metmous, Imane [1 ]
Attouch, Mohammed Kadi [1 ]
Mechab, Boubaker [1 ]
Merouan, Torkia [1 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Stat & Stochast Proc, Dept Probabil & Stat, Sidi Bel Abbes 22000, Algeria
关键词
Functional Data Analysis (FDA); Conditional distribution function; Nonparametric kernel estimation; Surrogate data; Conditional quantile; MEASUREMENT ERROR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to estimate the conditional cumulative distribution using the nonparametric kernel method for a surrogated scalar response variable given a functional random one. We introduce the new kernel type estimator for the conditional cumulative distribution function (cond-cdf) of this kind of data. Afterward, we estimate the quantile by inverting this estimated cond-cdf and state the asymptotic properties. The uniform almost complete convergence (with rate) of the kernel estimate of this model and the quantile estimator is established. Finally, a simulation study completed to show how our methodology can be adopted.
引用
收藏
页码:55 / 74
页数:20
相关论文
共 50 条