Joint spatial-temporal attention for action recognition

被引:25
|
作者
Yu, Tingzhao [1 ,2 ]
Guo, Chaoxu [1 ,2 ]
Wang, Lingfeng [1 ]
Gu, Huxiang [1 ]
Xiang, Shiming [1 ]
Pan, Chunhong [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 101408, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Spatial-Temporal attention; Two-Stage; REPRESENTATION;
D O I
10.1016/j.patrec.2018.07.034
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel high-level action representation using joint spatial-temporal attention model, with application to video-based human action recognition. Specifically, to extract robust motion representations of videos, a new spatial attention module based on 3D convolution is proposed, which can pay attention to the salient parts of the spatial areas. For better dealing with long-duration videos, a new bidirectional LSTM based temporal attention module is introduced, which aims to focus on the key video cubes instead of the key video frames of a given video. The spatial-temporal attention network can be jointly trained via a two-stage strategy, which enables us to simultaneously explore the correlation both in spatial and temporal domain. Experimental results on benchmark action recognition datasets demonstrate the effectiveness of our network. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 50 条
  • [1] Spatial-Temporal Attention for Action Recognition
    Sun, Dengdi
    Wu, Hanqing
    Ding, Zhuanlian
    Luo, Bin
    Tang, Jin
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 854 - 864
  • [2] Spatial-Temporal Separable Attention for Video Action Recognition
    Guo, Xi
    Hu, Yikun
    Chen, Fang
    Jin, Yuhui
    Qiao, Jian
    Huang, Jian
    Yang, Qin
    2022 INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML, 2022, : 224 - 228
  • [3] Spatial-Temporal Convolutional Attention Network for Action Recognition
    Luo, Huilan
    Chen, Han
    Computer Engineering and Applications, 2023, 59 (09): : 150 - 158
  • [4] Select and Focus: Action Recognition with Spatial-Temporal Attention
    Chan, Wensong
    Tian, Zhiqiang
    Liu, Shuai
    Ren, Jing
    Lan, Xuguang
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT III, 2019, 11742 : 461 - 471
  • [5] Action Recognition by Joint Spatial-Temporal Motion Feature
    Zhang, Weihua
    Zhang, Yi
    Gao, Chaobang
    Zhou, Jiliu
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [6] Spatial-temporal saliency action mask attention network for action recognition
    Jiang, Min
    Pan, Na
    Kong, Jun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71
  • [7] Recurrent Spatial-Temporal Attention Network for Action Recognition in Videos
    Du, Wenbin
    Wang, Yali
    Qiao, Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1347 - 1360
  • [8] Joint image-instance spatial-temporal attention for few-shot action recognition
    Qian, Zefeng
    Zhang, Chongyang
    Huang, Yifei
    Wang, Gang
    Ying, Jiangyong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 254
  • [9] Spatial-temporal channel-wise attention network for action recognition
    Chen, Lin
    Liu, Yungang
    Man, Yongchao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (14) : 21789 - 21808
  • [10] Recurrent attention network using spatial-temporal relations for action recognition
    Zhang, Mingxing
    Yang, Yang
    Ji, Yanli
    Xie, Ning
    Shen, Fumin
    SIGNAL PROCESSING, 2018, 145 : 137 - 145