The optimal upper bound of the number of generalized Euler configurations

被引:0
|
作者
Li ZhengDong [1 ,2 ]
Fu YanNing [1 ]
机构
[1] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
three-body problem; central configuration; generalized Euler configuration; quasi-polynomial equation; N-BODY PROBLEM; SYSTEMS;
D O I
10.1007/s11425-009-0196-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a generalized 3-body problem. The attraction force between any two bodies is proportional to the two "masses" and the b-th power of the mutual distance. Albouy and Fu have obtained the optimal upper bound of the number of generalized Euler configurations for the cases b <= 1 and b = 2, 3. This paper obtains the optimal upper bound for the remaining real values of b in a systematic way.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 50 条