18-run nonisomorphic three level orthogonal arrays

被引:25
|
作者
Evangelaras, H. [1 ]
Koukouvinos, C. [1 ]
Lappas, E. [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15773, Greece
关键词
orthogonal arrays; isomorphism; construction algorithm; projection properties;
D O I
10.1007/s00184-006-0085-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we construct all possible orthogonal arrays OA(18,q, 3,2) with 18 runs and 3 <= q <= 7 columns and present those that are nonisomorphic. A discussion on the novelty and the superiority of many of the designs found in terms of isomorphism and generalized minimum aberration has been made.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 50 条
  • [1] 18-run nonisomorphic three level orthogonal arrays
    H. Evangelaras
    C. Koukouvinos
    E. Lappas
    Metrika, 2007, 66 : 31 - 37
  • [2] 27-run nonisomorphic three level orthogonal arrays: Identification, evaluation and projection properties
    Evangelaras, H.
    Koukouvinos, C.
    Lappas, E.
    UTILITAS MATHEMATICA, 2011, 84 : 75 - 87
  • [3] Further contributions to nonisomorphic two level orthogonal arrays
    Evangelaras, H.
    Koukouvinos, C.
    Lappas, E.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (06) : 2080 - 2086
  • [4] Projection properties of certain three level orthogonal arrays
    Evangelaras, H
    Koukouvinos, C
    Dean, AM
    Dingus, CA
    METRIKA, 2005, 62 (2-3) : 241 - 257
  • [5] Projection properties of certain three level orthogonal arrays
    H. Evangelaras
    C. Koukouvinos
    A. M. Dean
    C. A. Dingus
    Metrika, 2005, 62 : 241 - 257
  • [6] On the use of three level orthogonal arrays in robust parameter design
    Kolaiti, E
    Koukouvinos, C
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (03) : 266 - 273
  • [7] An effective step-down algorithm for the construction and the identification of nonisomorphic orthogonal arrays
    P. Angelopoulos
    H. Evangelaras
    C. Koukouvinos
    E. Lappas
    Metrika, 2007, 66 : 139 - 149
  • [8] Three-level and Mixed-level Orthogonal Arrays for Lean Designs
    Ma, Chang-Xing
    Ai, Ming-Yao
    Chan, L. Y.
    Goh, T. N.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2010, 26 (06) : 529 - 539
  • [9] Complete enumeration of all geometrically non-isomorphic three-level orthogonal arrays in 18 runs
    Bird, E. M.
    Street, Deborah J.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 71 : 336 - 350
  • [10] An effective step-down algorithm for the construction and the identification of nonisomorphic orthogonal arrays
    Angelopoulos, P.
    Evangelaras, H.
    Koukouvinos, C.
    Lappas, E.
    METRIKA, 2007, 66 (02) : 139 - 149