A review of research on hematite as anode material for lithium-ion batteries

被引:37
|
作者
Zheng, Xiaodong [1 ,2 ]
Li, Jianlong [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[2] Binzhou Univ, Dept Chem Engn, Binzhou 256603, Peoples R China
关键词
Lithium-ion batteries; Anode; Hematite; IMPROVED ELECTROCHEMICAL PERFORMANCE; SIZED FE2O3-LOADED CARBON; IRON-OXIDE NANOPARTICLES; ONE-POT SYNTHESIS; RATE CAPABILITY; HIGH-CAPACITY; HYDROTHERMAL SYNTHESIS; FE2O3; NANOPARTICLES; ELECTRODE MATERIALS; FACILE SYNTHESIS;
D O I
10.1007/s11581-014-1262-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hematite (alpha-Fe2O3) nanomaterials have been investigated intensively as a promising anode material for Li-ion batteries due to their advantages such as high theoretical capacity, low cost, environmental friendliness, high resistance to corrosion, etc. However, their practical application is hampered by poor capacity retention, low Coulombic efficiency, and poor high-rate capacity. To overcome these drawbacks, many effective works have been proposed. This review focuses first on the present status of alpha-Fe2O3 nanomaterials in the field of Li-ion batteries including their features, synthesized methods, modification, application and then on their near future development.
引用
收藏
页码:1651 / 1663
页数:13
相关论文
共 50 条
  • [1] A review of research on hematite as anode material for lithium-ion batteries
    Xiaodong Zheng
    Jianlong Li
    Ionics, 2014, 20 : 1651 - 1663
  • [2] Hematite microdisks as an alternative anode material for lithium-ion batteries
    Balasingam, Suresh Kannan
    Kundu, Manab
    Balakrishnan, Balamuralitharan
    Kim, Hee-Je
    Svensson, Ann Mari
    Jayasayee, Kaushik
    MATERIALS LETTERS, 2019, 247 : 163 - 166
  • [3] Research Progress on SiO as Anode Material for Lithium-ion Batteries
    Mu H.
    Feng L.
    Wu L.
    Mao X.
    Liu Z.
    Cailiao Daobao/Materials Reports, 2023, 37 (18):
  • [4] Enhancement of Electrochemical Performance by the Oxygen Vacancies in Hematite as Anode Material for Lithium-Ion Batteries
    Peiyuan Zeng
    Yueying Zhao
    Yingwu Lin
    Xiaoxiao Wang
    Jianwen Li
    Wanwan Wang
    Zhen Fang
    Nanoscale Research Letters, 2017, 12
  • [5] Enhancement of Electrochemical Performance by the Oxygen Vacancies in Hematite as Anode Material for Lithium-Ion Batteries
    Zeng, Peiyuan
    Zhao, Yueying
    Lin, Yingwu
    Wang, Xiaoxiao
    Li, Jianwen
    Wang, Wanwan
    Fang, Zhen
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [6] An anode material of CrN for lithium-ion batteries
    Sun, Qian
    Fu, Zheng-Wen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) : A189 - A193
  • [7] Nanotubes as anode material for lithium-ion batteries
    Loutfy, RO
    Hossain, S
    Moravsky, A
    Saleh, M
    PERSPECTIVES OF FULLERENE NANOTECHNOLOGY, 2002, : 341 - 355
  • [8] Anode materials for lithium-ion batteries: A review
    Nzereogu, P. U.
    Omah, A. D.
    Ezema, F. I.
    Iwuoha, E. I.
    Nwanya, A. C.
    APPLIED SURFACE SCIENCE ADVANCES, 2022, 9
  • [9] Hematite nanoflakes as anode electrode materials for rechargeable lithium-ion batteries
    Chun, Li
    Wu, Xiaozhen
    Lou, Xiaoming
    Zhang, Youxiang
    ELECTROCHIMICA ACTA, 2010, 55 (09) : 3089 - 3092
  • [10] Synthetic hureaulite as anode material for lithium-ion batteries
    Pan, Meng-Yao
    Lu, Si-Tong
    Li, Yan-Yan
    Fan, Yang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (05) : 1015 - 1022