On A Generalized Baillon-Haddad Theorem for Convex Functions on Hilbert Space

被引:0
|
作者
Byrne, Charles L. [1 ]
机构
[1] Univ Massachusetts, Dept Math Sci, Lowell, MA 01854 USA
关键词
Bregman distance; convex function; firmly nonexpansive; gradient; nonexpansive; Baillon-Haddad Theorem; Krasnosel'skii-Mann Theorem; ALGORITHMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Baillon-Haddad Theorem asserts that, if the gradient operator of a convex and Frechet differentiable function on a Hilbert space is nonexpansive, then it is firmly nonexpansive. This theorem plays an important role in iterative optimization. In this note we present a short, elementary proof of a generalization of the Baillon-Haddad Theorem.
引用
收藏
页码:963 / 967
页数:5
相关论文
共 50 条