Comparative Analysis of Sentiment Orientation Using SVM and Naive Bayes Techniques

被引:0
|
作者
Rana, Shweta [1 ]
Singh, Archana [1 ]
机构
[1] Amity Univ Uttar Pradesh, ASET IT, Noida, India
关键词
online reviews; Naive Bayes; SVM; Opinion Mining; Sentimental analysis;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the recent few years several efforts were dedicated for mining opinions and sentiment automatically from natural language in online networking messages, news and business product reviews. In this paper, we have explored sentiment orientation considering the positive and negative sentiments using film user reviews. We applied the technique Naive Bayes' classifier.). We have performed the sentiment analysis on the reviews using the algorithms like Naive Bayes, Linear SVM and Synthetic words. Our experimental results indicate that the Linear SVM has provided the best accuracy which is followed by the Synthetic words approach. The result also evaluate that the highest accuracy rate is of drama.
引用
收藏
页码:106 / 111
页数:6
相关论文
共 50 条
  • [1] Sentiment Analysis of Azerbaijani twits Using Logistic Regression, Naive Bayes and SVM
    Hasanli, Huseyn
    Rustamov, Samir
    2019 IEEE 13TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2019), 2019, : 124 - 130
  • [2] Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset
    Rahat, Abdul Mohaimin
    Kahir, Abdul
    Masum, Abu Kaisar Mohammad
    PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2019), 2019, : 266 - 270
  • [3] An Analysis of ICON Aircraft Log Through Sentiment Analysis Using SVM and Naive Bayes Classification
    Sinha, Harshit
    Bagga, Rahul
    Raj, Gaurav
    2016 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (INCITE) - NEXT GENERATION IT SUMMIT ON THE THEME - INTERNET OF THINGS: CONNECT YOUR WORLDS, 2016,
  • [4] Comparison of SVM and Naive Bayes for Sentiment Classification using BERT data
    Rana, Shivani
    Kanji, Rakesh
    Jain, Shruti
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [5] Effect of Training Set Size on SVM and Naive Bayes for Twitter Sentiment Analysis
    Abdelwahab, Omar
    Bahgat, Mohamed
    Lowrance, Christopher J.
    Elmaghraby, Adel
    2015 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2015, : 46 - 51
  • [6] Sentiment Analysis using Naive Bayes and Complement Naive Bayes Classifier Algorithms on Hadoop Framework
    Seref, Berna
    Bostanci, Erkan
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 555 - 561
  • [7] Comparative analysis of SVM and Naive Bayes classifier for the SEMG signal classification
    Narayan, Yogendra
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 3241 - 3245
  • [8] Sentiment Analysis Using Naive Bayes Algorithm With Case Study
    Akella, Jishnusri Ojaswy
    Akella, L. N. Yashaswy
    PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018,
  • [9] Twitter Sentiment Analysis Using a Modified Naive Bayes Algorithm
    Masrani, Manav
    Poornalatha, G.
    INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, PT I, 2018, 655 : 171 - 181
  • [10] Real Time Sentiment Analysis of Tweets Using Naive Bayes
    Goel, Ankur
    Gautam, Jyoti
    Kumar, Sitesh
    PROCEEDINGS ON 2016 2ND INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2016, : 257 - 261