On soluble skew linear groups over finite-dimensional division algebras

被引:0
|
作者
Wehrfritz, B. A. F. [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
关键词
D O I
10.1016/j.jpaa.2006.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be a division ring of finite degree d and let n be a positive integer. If G is any soluble subgroup of GL(n, D), we prove that G has derived length at most 9 + log(2)d + (11/3)log(2)n and that G has a unipotent-by-abelian (abelian if G is completely reducible) normal subgroup of finite index dividing b(n).d(2n), where b(n) is an integer-valued function of n only. Actually, we derive bounds rather better than those quoted above, but rather more involved to state. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:301 / 309
页数:9
相关论文
共 50 条