Convergence of a mimetic finite difference method for static diffusion equation

被引:4
|
作者
Guevara-Jordan, J. M.
Rojas, S.
Freites-Villegas, M.
Castillo, J. E.
机构
[1] Cent Univ Venezuela, Dept Matemat, Caracas 1010, Venezuela
[2] Univ Simon Bolivar, Dept Fis, Edo Miranda 1082, Venezuela
[3] Univ Pedag Expt Libertador, Dept Matemat & Fis, Caracas 1010, Venezuela
[4] San Diego State Univ, Comp Sci Res Ctr, San Diego, CA 92182 USA
关键词
D O I
10.1155/2007/12303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of partial differential equations with finite differences mimetic methods that satisfy properties of the continuum differential operators and mimic discrete versions of appropriate integral identities is more likely to produce better approximations. Recently, one of the authors developed a systematic approach to obtain mimetic finite difference discretizations for divergence and gradient operators, which achieves the same order of accuracy on the boundary and inner grid points. This paper uses the second-order version of those operators to develop a new mimetic finite difference method for the steady-state diffusion equation. A complete theoretical and numerical analysis of this new method is presented, including an original and nonstandard proof of the quadratic convergence rate of this new method. The numerical results agree in all cases with our theoretical analysis, providing strong evidence that the new method is a better choice than the standard finite difference method.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Convergence of a Mimetic Finite Difference Method for Static Diffusion Equation
    J. M. Guevara-Jordan
    S. Rojas
    M. Freites-Villegas
    J. E. Castillo
    Advances in Difference Equations, 2007
  • [2] Convergence of mimetic finite difference discretizations of the diffusion equation
    Berndt, M.
    Lipnikov, K.
    Moulton, D.
    Shashkov, M.
    East-West Journal of Numerical Mathematics, 2001, 9 (04): : 265 - 284
  • [3] A study of mimetic and finite difference methods for the static diffusion equation
    Jones, G. Sosa
    Arteaga, J.
    Jimenez, O.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (03) : 633 - 648
  • [4] Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes
    Brezzi, F
    Lipnikov, K
    Shashkov, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 1872 - 1896
  • [5] Convergence of the mimetic finite difference and fitted mimetic finite difference method for options pricing
    Attipoe, David Sena
    Tambue, Antoine
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 401 (401)
  • [6] THE ARBITRARY ORDER MIXED MIMETIC FINITE DIFFERENCE METHOD FOR THE DIFFUSION EQUATION
    Gyrya, Vitaliy
    Lipnikov, Konstantin
    Manzini, Gianmarco
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 851 - 877
  • [7] Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces
    Brezzi, F
    Lipnikov, K
    Shashkov, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02): : 275 - 297
  • [8] The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor
    Gyrya, V.
    Lipnikov, K.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 348 : 549 - 566
  • [9] CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS WITH STAGGERED DISCRETIZATIONS OF DIFFUSION COEFFICIENTS
    Manzini, G.
    Lipnikov, K.
    Moulton, J. D.
    Shashkov, M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2956 - 2981
  • [10] CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS
    Cangiani, Andrea
    Manzini, Gianmarco
    Russo, Alessandro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2612 - 2637