PatientExploreR: an extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model

被引:27
|
作者
Glicksberg, Benjamin S. [1 ]
Oskotsky, Boris [1 ]
Thangaraj, Phyllis M. [2 ,3 ,4 ]
Giangreco, Nicholas [2 ,3 ,4 ]
Badgeley, Marcus A. [5 ,6 ]
Johnson, Kipp W. [5 ,6 ]
Datta, Debajyoti [1 ]
Rudrapatna, Vivek A. [1 ,7 ]
Rappoport, Nadav [1 ]
Shervey, Mark M. [5 ,6 ]
Miotto, Riccardo [5 ,6 ]
Goldstein, Theodore C. [1 ]
Rutenberg, Eugenia [1 ]
Frazier, Remi [8 ]
Lee, Nelson [8 ]
Israni, Sharat [1 ]
Larsen, Rick [8 ]
Percha, Bethany [5 ]
Li, Li [5 ,6 ]
Dudley, Joel T. [5 ,6 ]
Tatonetti, Nicholas P. [2 ,3 ,4 ]
Butte, Atul J. [1 ,9 ]
机构
[1] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94158 USA
[2] Columbia Univ, Dept Biomed Informat, New York, NY 10032 USA
[3] Columbia Univ, Dept Syst Biol, New York, NY 10032 USA
[4] Columbia Univ, Dept Med, New York, NY 10032 USA
[5] Icahn Sch Med Mt Sinai, Inst Next Generat Healthcare, Icahn Inst Genom Sci & Multiscale Biol, Dept Genom, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Inst Next Generat Healthcare, Icahn Inst Genom Sci & Multiscale Biol, Dept Data Sci, New York, NY 10029 USA
[7] Univ San Francisco, Dept Med, Div Gastroenterol, San Francisco, CA 94158 USA
[8] Univ San Francisco, Enterprise Informat & Analyt, San Francisco, CA 94158 USA
[9] Univ Calif Hlth, Ctr Data Driven Insights & Innovat, Oakland, CA 94607 USA
基金
美国国家卫生研究院;
关键词
PATHWAYS;
D O I
10.1093/bioinformatics/btz409
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Electronic health records (EHRs) are quickly becoming omnipresent in healthcare, but interoperability issues and technical demands limit their use for biomedical and clinical research. Interactive and flexible software that interfaces directly with EHR data structured around a common data model (CDM) could accelerate more EHR-based research by making the data more accessible to researchers who lack computational expertise and/or domain knowledge. Results: We present PatientExploreR, an extensible application built on the R/Shiny framework that interfaces with a relational database of EHR data in the Observational Medical Outcomes Partnership CDM format. PatientExploreR produces patient-level interactive and dynamic reports and facilitates visualization of clinical data without any programming required. It allows researchers to easily construct and export patient cohorts from the EHR for analysis with other software. This application could enable easier exploration of patient-level data for physicians and researchers. PatientExploreR can incorporate EHR data from any institution that employs the CDM for users with approved access. The software code is free and open source under the MIT license, enabling institutions to install and users to expand and modify the application for their own purposes.
引用
收藏
页码:4515 / 4518
页数:4
相关论文
共 50 条
  • [1] ETL: From the German Health Data Lab data formats to the OMOP Common Data Model
    Finster, Melissa
    Moinat, Maxim
    Taghizadeh, Elham
    PLOS ONE, 2025, 20 (01):
  • [2] Reconstructing the patient's natural history from electronic health records
    Najafabadipour, Marjan
    Zanin, Massimiliano
    Rodriguez-Gonzalez, Alejandro
    Torrente, Maria
    Nunez Garcia, Beatriz
    Cruz Bermudez, Juan Luis
    Provencio, Mariano
    Menasalvas, Ernestina
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 105
  • [3] Retrieving Clinical and Omic Data from Electronic Health Records
    Cabot, Chloe
    Lelong, Romain
    Grosjean, Julien
    Soualmia, Lina F.
    Darmoni, Stefan J.
    TRANSFORMING HEALTHCARE WITH THE INTERNET OF THINGS, 2016, 221 : 115 - 115
  • [4] Computational Discovery and Visualization of Patient Phenotypes from Emergency Department Electronic Health Records
    Haimovich, A.
    Hong, W.
    Taylor, R.
    Mortazavi, B.
    ANNALS OF EMERGENCY MEDICINE, 2018, 72 (04) : S130 - S131
  • [5] Surgical Outcomes and Quality Assessment of Trabeculectomy: Leveraging Electronic Health Records for Clinical Data Visualization
    Guo, Xinxing
    Li, Bowen
    Friedman, David S.
    Boland, Michael, V
    JOURNAL OF GLAUCOMA, 2019, 28 (12) : 1023 - 1028
  • [6] Trajectories: a framework for detecting temporal clinical event sequences from health data standardized to the Observational Medical Outcomes Partnership (OMOP) Common Data Model
    Kunnapuu, Kadri
    Ioannou, Solomon
    Ligi, Kadri
    Kolde, Raivo
    Laur, Sven
    Vilo, Jaak
    Rijnbeek, Peter R.
    Reisberg, Sulev
    JAMIA OPEN, 2022, 5 (01)
  • [7] Characterizing Patient-Generated Clinical Data and Associated Implications for Electronic Health Records
    Arsoniadis, Elliot G.
    Tambyraja, Rabindra
    Khairat, Saif
    Jahansouz, Cyrus
    Scheppmann, Daren
    Kwaan, Mary R.
    Hultman, Gretchen
    Melton, Genevieve B.
    MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 158 - 162
  • [8] Automated data cleaning of paediatric anthropometric data from longitudinal electronic health records: protocol and application to a large patient cohort
    Phan, Hang T. T.
    Borca, Florina
    Cable, David
    Batchelor, James
    Davies, Justin H.
    Ennis, Sarah
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [9] Automated data cleaning of paediatric anthropometric data from longitudinal electronic health records: protocol and application to a large patient cohort
    Hang T. T. Phan
    Florina Borca
    David Cable
    James Batchelor
    Justin H. Davies
    Sarah Ennis
    Scientific Reports, 10
  • [10] Utilizing big data from electronic health records in pediatric clinical care
    Charles G. Macias
    Kenneth E. Remy
    Amie J. Barda
    Pediatric Research, 2023, 93 : 382 - 389