When sintered Sm(Co, Fe, Cu, Zr)(z) permanent magnets are prepared by metal injection molding, some organic binders are added in alloy powder, which leads to much residual carbon in the magnets. The residual carbon decreases magnetic properties and destroys the microstructure of the magnets. In this paper, the behavior of carbon in Sm(Co, Fe, Cu, Zr), permanent magnets has been studied. The results indicate that Sm(Co, Fe, Cu, Zr), magnets can keep excellent magnetic properties when the carbon content is below 0.1 wt.%: Br >= 10 kGs, H-cj >= 22 kOe, BHmax >= 25 MGOe. When the carbon content is above 0.1 wt.%, Br, H-cj and BHmax decrease with increasing carbon content evidently. Carbon consumes Zr content and forms ZrC, which reduces the volume fraction of the lamella and Sm(Co, Cu)(5) phases. Thus, the cell size increases and the cellular microstructure deteriorates. When the carbon content reaches 0.43 wt.%, there is not enough Sm(Co, Cu)(5) phase to form a uniform cellular microstructure. Br, H-cj and BHmax are approximate to zero. Since carbon has little influence on the content of Sm-2(Co, Fe)(17) phase, Ms can keep a high value (>= 100 emu/g). ZrC has high melting point (3420 degrees C) and acts as dispersion particle in the magnets, which prevents the grains of SEM structure growing and reduces the liquid content of green compacts during sintering. Therefore, the density of the magnets decreases. (c) 2006 Elsevier B.V. All rights reserved.