Multivariate normal distributions parametrized as a Riemannian symmetric space

被引:76
|
作者
Lovric, M [1 ]
Min-Oo, M [1 ]
Ruh, EA [1 ]
机构
[1] McMaster Univ, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
multivariate normal distributions; geodesic distance; Riemannian symmetric space; curvature; center of mass;
D O I
10.1006/jmva.1999.1853
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The construction of a distance function between probability distributions is of importance in mathematical statistics and its applications. The distance Function based on the Fisher information metric has been studied by a number of statisticians, especially in the case of the multivariate normal distribution (Gaussian) on R-n. It turns out that, except in the case n = 1, where the Fisher metric describes the hyperbolic plane, it is difficult to obtain an exact formula For the distance function (although this can be achieved for special families with fixed mean or fixed covariance). We propose to study a slightly different metric on the space of multivariate normal distributions on R-n. Our metric is based on the fundamental idea of parametrizing this space as the Riemannian symmetric space SL(n + 1)/SO(n + 1). Symmetric spaces are well understood in Riemannian geometry, allowing us to compute distance functions and other relevant geometric data. (C) 2000 Academic Press. AMS 1991 subject classifications: 53C35, 62R30, 62B10.
引用
收藏
页码:36 / 48
页数:13
相关论文
共 50 条
  • [1] MONTE CARLO TRACKING ON THE RIEMANNIAN MANIFOLD OF MULTIVARIATE NORMAL DISTRIBUTIONS
    Snoussi, Hichem
    Richard, Cedric
    2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 280 - 285
  • [2] Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices
    Said, Salem
    Bombrun, Lionel
    Berthoumieu, Yannick
    Manton, Jonathan H.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2153 - 2170
  • [3] MAXIMAL PARALLEL DISTRIBUTIONS ON A PSEUDO-RIEMANNIAN SYMMETRIC SPACE
    CAHEN, M
    PARKER, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (22): : 1431 - 1433
  • [4] Quadratic forms of multivariate skew normal-symmetric distributions
    Huang, WJ
    Chen, YH
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) : 871 - 879
  • [5] Solvability on Riemannian symmetric space
    Daher, R
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (03): : 349 - 362
  • [6] ON A-SYMMETRIC MULTIVARIATE DISTRIBUTIONS
    CAMBANIS, S
    KEENER, R
    SIMONS, G
    JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (02) : 213 - 233
  • [7] Cumulants of Multivariate Symmetric and Skew Symmetric Distributions
    Jammalamadaka, Sreenivasa Rao
    Taufer, Emanuele
    Terdik, Gyorgy H.
    SYMMETRY-BASEL, 2021, 13 (08):
  • [8] A RIEMANNIAN GEOMETRY OF THE MULTIVARIATE NORMAL MODEL
    SKOVGAARD, LT
    SCANDINAVIAN JOURNAL OF STATISTICS, 1984, 11 (04) : 211 - 223
  • [9] FILTERING WITH OBSERVATIONS ON A RIEMANNIAN SYMMETRIC SPACE
    PONTIER, M
    SZPIRGLAS, J
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (03) : 609 - 627
  • [10] Distribution Calibration in Riemannian Symmetric Space
    Si, Si
    Liu, Wei
    Tao, Dacheng
    Chan, Kwok-Ping
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (04): : 921 - 930