The Dps family of proteins are a diverse group of bacterial stress-inducible polypeptides that bind DNA and likely confer resistance to peroxide damage during periods of oxidative stress and long-term nutrient limitation, Some members of the Dps protein family have been shown to form abundant, large (similar to 150 kD) hexameric complexes that bind chromosomal DNA with little sequence specificity. Previous work from this lab has demonstrated that the Dps proteins are divergent members of the bacterioferritin/bacterioferritin superfamily, and that the Synechococcus sp. PCC7942 Dps homolog, named DpsA, is a DNA-binding hemoprotein having heme-dependent catalytic activity. We speculated that this protein may yield a peroxide-consuming mechanism located on the chromosomal DNA, and we also suggested that this activity may be a necessary feature ro handle the endogenous oxidative stresses associated with oxygenic photosynthesis. Current work has examined the expression of dpsA both under nutrient stress and during the growth phase; whereas dpsA mRNA is detectable in the exponential phase, transition to stationary phase yields a 20-fold increase in steady-state mRNA levels, Mapping the promoter region identifies a TAGAAT -10 sequence likely recognized by a cyanobacterial RpoS homolog. Lastly, site-directed mutants lacking dpsA function exhibit a severe phenotype impaired under all conditions yielding photooxidative stress; these include high light and treatment with paraquat. This supports our contention that the DpsA protein serves an important protective function in an obligate photoautotroph.