Decomposition in derivative-free optimization

被引:1
|
作者
Ma, Kaiwen [1 ]
Sahinidis, Nikolaos V. [2 ,3 ]
Rajagopalan, Sreekanth [4 ]
Amaran, Satyajith [4 ]
Bury, Scott J. [5 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[4] Dow Chem Co USA, Lake Jackson, TX USA
[5] Dow Chem Co USA, Midland, TX USA
关键词
Derivative-free optimization; Superiorization; SNOBFIT; ADAPTIVE DIRECT SEARCH; PARALLEL SPACE DECOMPOSITION; PATTERN SEARCH; PROJECTION METHODS; FREE ALGORITHMS; CONVERGENCE; SUPERIORIZATION; MINIMIZATION; FEASIBILITY; SOFTWARE;
D O I
10.1007/s10898-021-01051-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes a novel decomposition framework for derivative-free optimization (DFO) algorithms. Our framework significantly extends the scope of current DFO solvers to larger-scale problems. We show that the proposed framework closely relates to the superiorization methodology that is traditionally used for improving the efficiency of feasibility-seeking algorithms for constrained optimization problems in a derivative-based setting. We analyze the convergence behavior of the framework in the context of global search algorithms. A practical implementation is developed and exemplified with the global model-based solver Stable Noisy Optimization by Branch and Fit (SNOBFIT) [36]. To investigate the decomposition framework's performance, we conduct extensive computational studies on a collection of over 300 test problems of varying dimensions and complexity. We observe significant improvements in the quality of solutions for a large fraction of the test problems. Regardless of problem convexity and smoothness, decomposition leads to over 50% improvement in the objective function after 2500 function evaluations for over 90% of our test problems with more than 75 variables.
引用
收藏
页码:269 / 292
页数:24
相关论文
共 50 条
  • [1] Decomposition in derivative-free optimization
    Kaiwen Ma
    Nikolaos V. Sahinidis
    Sreekanth Rajagopalan
    Satyajith Amaran
    Scott J Bury
    Journal of Global Optimization, 2021, 81 : 269 - 292
  • [2] Efficient derivative-free optimization
    Belitz, Paul
    Bewley, Thomas
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5607 - 5612
  • [3] SURVEY OF DERIVATIVE-FREE OPTIMIZATION
    Xi, Min
    Sun, Wenyu
    Chen, Jun
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 537 - 555
  • [4] Derivative-free optimization methods
    Larson, Jeffrey
    Menickelly, Matt
    Wild, Stefan M.
    ACTA NUMERICA, 2019, 28 : 287 - 404
  • [5] Derivative-Free and Blackbox Optimization
    Huyer, W.
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (02): : 480 - 480
  • [6] ZOOpt: a toolbox for derivative-free optimization
    Liu, Yu-Ren
    Hu, Yi-Qi
    Qian, Hong
    Qian, Chao
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (10)
  • [7] ZOOpt: a toolbox for derivative-free optimization
    Yu-Ren LIU
    Yi-Qi HU
    Hong QIAN
    Chao QIAN
    Yang YU
    ScienceChina(InformationSciences), 2022, 65 (10) : 293 - 294
  • [8] ZOOpt: a toolbox for derivative-free optimization
    Yu-Ren Liu
    Yi-Qi Hu
    Hong Qian
    Chao Qian
    Yang Yu
    Science China Information Sciences, 2022, 65
  • [9] A derivative-free algorithm for unconstrained optimization
    Peng Y.
    Liu Z.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (4) : 491 - 498
  • [10] Derivative-Free Optimization via Classification
    Yu, Yang
    Qian, Hong
    Hu, Yi-Qi
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2286 - 2292