On recursive hyperbolic functions in Fibonacci-Lucas sense

被引:1
|
作者
Dasdemir, Ahmet [1 ]
Senturk, Tuncay Deniz [2 ]
Unal, Zafer [1 ]
机构
[1] Kastamonu Univ, Fac Arts & Sci, Dept Math, TR-37150 Kastamonu, Turkey
[2] Kastamonu Univ, Inst Sci & Technol, Dept Math, TR-37150 Kastamonu, Turkey
来源
关键词
Horadam hyperbolic function; Horadam spiral; quasi-sine Horadam function; Honsberger formula; Vajda's identity;
D O I
10.15672/hujms.536435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The hyperbolic Fibonacci and hyperbolic Lucas functions have been introduced before and have been improved to functions of the symmetrical form. In this paper, we generalize the mentioned definitions, which will be called Horadam hyperbolic sine function (HSF) and Horadam hyperbolic cosine function (HCF). Further, we present many identities and hyperbolic properties of our new definitions.
引用
收藏
页码:2046 / 2062
页数:17
相关论文
共 50 条
  • [1] Fibonacci-Lucas hyperbolas
    Sporn, Howard
    MATHEMATICAL GAZETTE, 2022, 106 (566): : 242 - 246
  • [2] A Fibonacci-Lucas determinant
    Mahon, J.
    FIBONACCI QUARTERLY, 2007, 45 (01): : 87 - 88
  • [3] A Fibonacci-Lucas extremum
    Knuth, DE
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (08): : 762 - 763
  • [4] FIBONACCI-LUCAS CENTROID
    BLUMBERG, W
    BRADY, WG
    BRUCKMAN, PS
    CSEH, L
    DRESEL, L
    FREITAG, HT
    KUIPERS, L
    RABINOWITZ, S
    MERENYI, I
    MILSOM, JW
    PRIELIPP, B
    SINGH, S
    SOMER, L
    WULCZYN, G
    FIBONACCI QUARTERLY, 1984, 22 (02): : 184 - 184
  • [5] A Fibonacci-Lucas equality
    Kwong, H
    FIBONACCI QUARTERLY, 2001, 39 (02): : 186 - 186
  • [6] ANALOGUES OF A FIBONACCI-LUCAS IDENTITY
    Bhatnagar, Gaurav
    FIBONACCI QUARTERLY, 2016, 54 (02): : 166 - 171
  • [7] 93.46 From trigonometric identity to hyperbolic identity to Fibonacci-Lucas identity
    Hindin, Harvey J.
    MATHEMATICAL GAZETTE, 2009, 93 (528): : 485 - 488
  • [8] Generalizations of the Fibonacci-Lucas Relations
    Kuhapatanakul, K.
    Thongsing, K.
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (01): : 81 - 81
  • [9] AREA OF A FIBONACCI-LUCAS TRIANGLE
    BRUCKMAN, PS
    FIBONACCI QUARTERLY, 1984, 22 (02): : 184 - 185
  • [10] A Note on Incomplete Fibonacci-Lucas Relations
    Zhong, Jingyang
    Yao, Jialing
    Chung, Chan-Liang
    SYMMETRY-BASEL, 2023, 15 (12):