Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence

被引:52
|
作者
Li, Chunqiang [1 ,2 ]
Pastila, Riikka K. [1 ,2 ,3 ]
Pitsillides, Costas [1 ,2 ,4 ]
Runnels, Judith M. [1 ,2 ,5 ]
Puoris'haag, Mehron [1 ,2 ]
Cote, Daniel [6 ]
Lin, Charles P. [1 ,2 ]
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Wellman Ctr Photomed, Boston, MA 02115 USA
[2] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Ctr Syst Biol, Boston, MA USA
[3] Radiat & Nucl Safety Author, FI-00881 Helsinki, Finland
[4] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[5] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[6] Univ Laval, Univ Laval Robert Giffard, Ctr Rech, Quebec City, PQ G1J2G3, Canada
来源
OPTICS EXPRESS | 2010年 / 18卷 / 02期
基金
美国国家卫生研究院; 芬兰科学院;
关键词
LASER-SCANNING MICROSCOPY; NONMELANOMA SKIN-CANCER; ULTRAVIOLET MICROSCOPY; MULTIPHOTON MICROSCOPY; CONFOCAL MICROSCOPY; 3-PHOTON EXCITATION; BONE-MARROW; INFLAMMATION; MIGRATION; PROTEINS;
D O I
10.1364/OE.18.000988
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a new method for imaging leukocytes in vivo by exciting the endogenous protein fluorescence in the ultraviolet (UV) spectral region where tryptophan is the major fluorophore. Two-photon excitation near 590 nm allows noninvasive optical sectioning through the epidermal cell layers into the dermis of mouse skin, where leukocytes can be observed by video-rate microscopy to interact dynamically with the dermal vascular endothelium. Inflammation significantly enhances leukocyte rolling, adhesion, and tissue infiltration. After exiting the vasculature, leukocytes continue to move actively in tissue as observed by time-lapse microscopy, and are distinguishable from resident autofluorescent cells that are not motile. Because the new method alleviates the need to introduce exogenous labels, it is potentially applicable for tracking leukocytes and monitoring inflammatory cellular reactions in humans. (C) 2010 Optical Society of America
引用
收藏
页码:988 / 999
页数:12
相关论文
共 50 条
  • [1] Two-photon-excited fluorescence and two-photon spectrofluoroelectrochemistry of riboflavin
    Bi, YH
    Huang, ZL
    Liu, B
    Zou, QJ
    Yu, JH
    Zhao, YD
    Luo, QM
    ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (04) : 595 - 599
  • [2] Two-photon-excited fluorescence enhanced by a surface plasmon
    Kano, H
    Kawata, S
    OPTICS LETTERS, 1996, 21 (22) : 1848 - 1850
  • [4] Two-photon-excited fluorescence in ultradisperse diamond powders
    Agal'tsov, AM
    Gorelik, VS
    Rakhmatullaev, IA
    TECHNICAL PHYSICS, 1997, 42 (11) : 1344 - 1345
  • [5] Two-photon-excited fluorescence of CO: experiments and modeling
    Ruchkina, Maria
    Ding, Pengji
    Alden, Marcus
    Bood, Joakim
    Brackmann, Christian
    OPTICS EXPRESS, 2019, 27 (18) : 25656 - 25669
  • [6] Two-photon-excited fluorescence in ultradisperse diamond powders
    A. M. Agal’tsov
    V. S. Gorelik
    I. A. Rakhmatullaev
    Technical Physics, 1997, 42 : 1344 - 1345
  • [7] Two-photon isomerization triggers two-photon-excited fluorescence of an azobenzene derivative
    Wei, Zhongran
    He, Liu
    Chi, Zhen
    Ran, Xia
    Guo, Lijun
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2019, 206 : 120 - 125
  • [8] Two-photon-excited fluorescence in KTiOPO4 polycrystals
    Agaltsov, AM
    Gorelik, VS
    Voronkov, VI
    Rakhmatullaev, IA
    Yanovskii, VK
    JOURNAL OF RUSSIAN LASER RESEARCH, 1997, 18 (03) : 217 - 221
  • [9] Single-molecule detection by two-photon-excited fluorescence
    Mertz, J
    Xu, C
    Webb, WW
    OPTICS LETTERS, 1995, 20 (24) : 2532 - 2534
  • [10] Spatial distribution of two-photon-excited fluorescence in scattering media
    Ying, Jinpin
    Liu, Feng
    Alfano, R.R.
    Applied Optics, 1999, 38 (01): : 224 - 229