An Artificial Tactile Neuron Enabling Spiking Representation of Stiffness and Disease Diagnosis

被引:38
|
作者
Lee, Junseok [1 ,2 ,3 ]
Kim, Seonjeong [4 ,5 ]
Park, Seongjin [1 ]
Lee, Jaesang [4 ,6 ]
Hwang, Wonseop [1 ]
Cho, Seong Won [4 ,6 ]
Lee, Kyuho [3 ]
Kim, Sun Mi [7 ]
Seong, Tae-Yeon [5 ]
Park, Cheolmin [2 ,3 ]
Lee, Suyoun [4 ,8 ]
Yi, Hyunjung [1 ,2 ]
机构
[1] Korea Inst Sci & Technol, Post Silicon Semicond Inst, Seoul 02792, South Korea
[2] Yonsei Univ, YU KIST, Seoul 03722, South Korea
[3] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
[4] Korea Inst Sci & Technol, Ctr Neuromorph Engn, Seoul 02792, South Korea
[5] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[6] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[7] Seoul Natl Univ, Seoul Natl Univ Bundang Hosp, Coll Med, Seongnam 13620, South Korea
[8] Korea Univ Sci & Technol, Div Nano & Informat Technol, Daejeon 34316, South Korea
基金
新加坡国家研究基金会;
关键词
artificial tactile neurons; disease diagnosis; elastography; neuromorphic sensors; ovonic threshold switching; piezoresistive sensors; spiking neural networks; ULTRASOUND ELASTOGRAPHY; CELLS; MECHANOMICS; PARALLEL;
D O I
10.1002/adma.202201608
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mechanical properties of biological systems provide useful information about the biochemical status of cells and tissues. Here, an artificial tactile neuron enabling spiking representation of stiffness and spiking neural network (SNN)-based learning for disease diagnosis is reported. An artificial spiking tactile neuron based on an ovonic threshold switch serving as an artificial soma and a piezoresistive sensor as an artificial mechanoreceptor is developed and shown to encode the elastic stiffness of pressed materials into spike frequency evolution patterns. SNN-based learning of ultrasound elastography images abstracted by spike frequency evolution rate enables the classification of malignancy status of breast tumors with a recognition accuracy up to 95.8%. The stiffness-encoding artificial tactile neuron and learning of spiking-represented stiffness patterns hold a great promise for the identification and classification of tumors for disease diagnosis and robot-assisted surgery with low power consumption, low latency, and yet high accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] An artificial spiking quantum neuron
    Lasse Bjørn Kristensen
    Matthias Degroote
    Peter Wittek
    Alán Aspuru-Guzik
    Nikolaj T. Zinner
    npj Quantum Information, 7
  • [2] An artificial spiking quantum neuron
    Kristensen, Lasse Bjorn
    Degroote, Matthias
    Wittek, Peter
    Aspuru-Guzik, Alan
    Zinner, Nikolaj T.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [3] A spiking neuron representation of auditory signals
    Wang, GP
    Pavel, M
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 416 - 421
  • [4] Artificial Tactile Perception System Based on Spiking Tactile Neurons and Spiking Neural Networks
    Wen, Juan
    Zhang, Le
    Wang, Yu-Zhe
    Guo, Xin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 16 (01) : 998 - 1004
  • [5] Relaxation of a Spiking Mott Artificial Neuron
    Tesler, Federico
    Adda, Coline
    Tranchant, Julien
    Corraze, Benoit
    Janod, Etienne
    Cario, Laurent
    Stoliar, Pablo
    Rozenberg, Marcelo
    PHYSICAL REVIEW APPLIED, 2018, 10 (05):
  • [6] Stochastic Resonance in Optoelectronic Artificial Spiking Neuron
    N. V. Lakhmitskii
    V. N. Chizhevskii
    S. Ya. Kilin
    Journal of Applied Spectroscopy, 2023, 90 : 1069 - 1073
  • [7] Stochastic Resonance in Optoelectronic Artificial Spiking Neuron
    Lakhmitskii, N. V.
    Chizhevskii, V. N.
    Kilin, S. Ya.
    JOURNAL OF APPLIED SPECTROSCOPY, 2023, 90 (5) : 1069 - 1073
  • [8] An Artificial Sensory Neuron with Tactile Perceptual Learning
    Wan, Changjin
    Chen, Geng
    Fu, Yangming
    Wang, Ming
    Matsuhisa, Naoji
    Pan, Shaowu
    Pan, Liang
    Yang, Hui
    Wan, Qing
    Zhu, Liqiang
    Chen, Xiaodong
    ADVANCED MATERIALS, 2018, 30 (30)
  • [9] Artificial Tactile Sensing Neuron with Tactile Sensing Ability Based on a Chitosan Memristor
    Wang, Lu
    Zhang, Peng
    Gao, Zhiqiang
    Wen, Dianzhong
    ADVANCED SCIENCE, 2024, 11 (19)
  • [10] Learning encoding and decoding filters for data representation with a spiking neuron
    Gutmann, Michael
    Hyvaerinen, Aapo
    Aihara, Kazuyuki
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 243 - 248