Geometry, moments and Bayesian networks with hidden variables

被引:0
|
作者
Settimi, R [1 ]
Smith, JQ [1 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
关键词
conditional independence; identifiability; Bayesian multinomial analysis; exponential family;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this paper is to present a systematic way of analysing the geometry of the probability spaces for a particular class of Bayesian networks with hidden variables. It will be shown that the conditional independence statements implicit in such graphical models can be neatly expressed as simple polynomial relationships among central moments. This algebraic framework will enable us to explore and identify the structural constraints on the sample space induced by models with tree strcutures and therefore characterise the families of distributions consistent with such conditional independence assumptions.
引用
收藏
页码:293 / 298
页数:6
相关论文
共 50 条
  • [1] Geometry, moments and conditional independence trees with hidden variables
    Settimi, R
    Smith, JQ
    ANNALS OF STATISTICS, 2000, 28 (04): : 1179 - 1205
  • [2] Incremental learning of Bayesian networks with hidden variables
    Tian, FZ
    Zhang, HW
    Lu, YC
    Shi, CY
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 651 - 652
  • [3] Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables
    Allman, Elizabeth S.
    Rhodes, John A.
    Stanghellini, Elena
    Valtorta, Marco
    JOURNAL OF CAUSAL INFERENCE, 2015, 3 (02) : 189 - 205
  • [4] Learning Bayesian networks with hidden variables for user modeling
    Wittig, F
    UM99: USER MODELING, PROCEEDINGS, 1999, (407): : 343 - 344
  • [5] Data clustering using hidden variables in hybrid Bayesian networks
    Fernández A.
    Gámez J.A.
    Rumí R.
    Salmerón A.
    Fernández, Antonio, 1600, Springer Verlag (02): : 141 - 152
  • [6] Efficient Approximations for the Marginal Likelihood of Bayesian Networks with Hidden Variables
    David Maxwell Chickering
    David Heckerman
    Machine Learning, 1997, 29 : 181 - 212
  • [7] Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    Chickering, DM
    Heckerman, D
    MACHINE LEARNING, 1997, 29 (2-3) : 181 - 212
  • [8] Using Bayesian networks with hidden variables for identifying trustworthy users in social networks
    Chen, Xu
    Yuan, Yuyu
    Orgun, Mehmet Ali
    JOURNAL OF INFORMATION SCIENCE, 2020, 46 (05) : 600 - 615
  • [9] Discrete mixtures in Bayesian networks with hidden variables: a latent time budget example
    Croft, J
    Smith, JQ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 41 (3-4) : 539 - 547
  • [10] On the geometry of DAG models with hidden variables
    Geiger, D
    Heckerman, D
    King, H
    Meek, C
    ARTIFICIAL INTELLIGENCE AND STATISTICS 99, PROCEEDINGS, 1999, : 76 - 85