Thermal rectification in nanosized model systems: A molecular dynamics approach

被引:68
|
作者
Alaghemandi, Mohammad [1 ]
Leroy, Frederic [1 ]
Mueller-Plathe, Florian [1 ]
Boehm, Michael C. [1 ]
机构
[1] Tech Univ Darmstadt, Eduard Zintl Inst Anorgan & Phys Chem, D-64287 Darmstadt, Germany
关键词
ELECTRICAL-CONDUCTIVITY; TEMPERATURE-DEPENDENCE; CARBON NANOTUBES; MECHANICS; JUNCTION; FLOW;
D O I
10.1103/PhysRevB.81.125410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal conductivity in a set of mass-graded nanosized model systems has been studied by nonequilibrium molecular dynamics (MD) simulations in order to understand the phenomenon of thermal rectification that has been detected in externally mass-loaded nanotubes. We have found that the preferred direction of the heat transport in mass-graded nanotubes occurs from light to heavy atoms while the opposite direction of the heat transfer is observed in anharmonic mass-graded single-file chains. Mass-graded polyacetylenelike chains behave like single-file chains as long as the mass gradient is held by the backbone atoms. The thermal rectification in nanotubes with a gradient in the bond force constant (k(r)) has been studied too. They are characterized by a preferred heat transfer from the region with large k(r) to the domain with small k(r). Thermal rectification has been studied also in planar and three-dimensional mass-graded systems where the heat flow follows a preferred direction, similar to that observed in nanotubes. Additionally, a more realistic system has been implemented. Here, a different number of carbon nanotubes have been grafted on both sides of a graphene sheet. We have found that the transfer of the vibrational energy, as well as the generation of low-energy modes at atoms with large masses, is responsible for the sign of the thermal rectification. Its origin has been rationalized with the help of (projected) vibrational density of states. On the basis of the present MD simulations we suggest a possible design of materials showing a strong preference for the heat transfer into one direction.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Heat transport and thermal rectification in molecular junctions: A minimal model approach
    Diaz, E.
    Gutierrez, R.
    Cuniberti, G.
    PHYSICAL REVIEW B, 2011, 84 (14):
  • [2] THERMAL RECTIFICATION IN GRAPHENE AND CARBON NANOTUBE SYSTEMS USING MOLECULAR DYNAMICS SIMULATIONS
    Vallabhaneni, Ajit K.
    Hu, Jiuning
    Chen, Yong P.
    Ruan, Xiulin
    PROCEEDINGS OF THE ASME/JSME 8TH THERMAL ENGINEERING JOINT CONFERENCE 2011, VOL 3, 2011, : 409 - +
  • [3] Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons
    Jiuning Hu
    Xiulin Ruan
    Yong P. Chen
    International Journal of Thermophysics, 2012, 33 : 986 - 991
  • [4] Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons
    Hu, Jiuning
    Ruan, Xiulin
    Chen, Yong P.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2012, 33 (06) : 986 - 991
  • [5] Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study
    Hu, Jiuning
    Ruan, Xiulin
    Chen, Yong P.
    NANO LETTERS, 2009, 9 (07) : 2730 - 2735
  • [6] Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation
    Yousefi, Farrokh
    Khoeini, Farhad
    Rajabpour, Ali
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 146
  • [7] Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach
    Yousefi, Farrokh
    Khoeini, Farhad
    Rajabpour, Ali
    NANOTECHNOLOGY, 2020, 31 (28)
  • [8] Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations
    Alaghemandi, Mohammad
    Leroy, Frederic
    Algaer, Elena
    Boehm, Michael C.
    Mueller-Plathe, Florian
    NANOTECHNOLOGY, 2010, 21 (07)
  • [9] THERMAL RECTIFICATION IN BI-LAYERED NANOFILM BY MOLECULAR DYNAMICS
    Wang, Shuai-Chuang
    Liang, Xin-Gang
    ICNMM 2009, PTS A-B, 2009, : 881 - 885
  • [10] Thermal Rectification of Silicene Nanosheets With Triangular Cavities by Molecular Dynamics Simulations
    Feng, Yuan
    Liang, Xingang
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2017, 139 (05):